Geometry Independent Surface Light Fields for Real Time Rendering of Precomputed Global Illumination

E. Miandijy
Linkoping University, Sweden

J. Kronander
Linkoping University, Sweden

J. Unger
Linkoping University, Sweden

Ladda ner artikel

Ingår i: Proceedings of SIGRAD 2011. Evaluations of Graphics and Visualization — Efficiency; Usefulness; Accessibility; Usability; November 17-18; 2011; KTH; Stockholm; Sweden

Linköping Electronic Conference Proceedings 65:5, s. 27-34

Visa mer +

Publicerad: 2011-11-21

ISBN: 978-91-7393-008-6

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


We present a framework for generating; compressing and rendering of Surface Light Field (SLF) data. Our method is based on radiance data generated using physically based rendering methods. Thus the SLF data is generated directly instead of re-sampling digital photographs. Our SLF representation decouples spatial resolution from geometric complexity. We achieve this by uniform sampling of spatial dimension of the SLF function. For compression; we use Clustered Principal Component Analysis (CPCA). The SLF matrix is first clustered to low frequency groups of points across all directions. Then we apply PCA to each cluster. The clustering ensures that the withincluster frequency of data is low; allowing for projection using a few principal components. Finally we reconstruct the CPCA encoded data using an efficient rendering algorithm. Our reconstruction technique ensures seamless reconstruction of discrete SLF data. We applied our rendering method for fast; high quality off-line rendering and real-time illumination of static scenes. The proposed framework is not limited to complexity of materials or light sources; enabling us to render high quality images describing the full global illumination in a scene.


Inga nyckelord är tillgängliga


[AB91] ADELSON E. H.; BERGEN J. R.: The plenoptic function and the elements of early vision. In Computational Models of Visual Processing; Landy M. S.; Movshon A. J.; (Eds.). MIT Press; Cambridge; MA; 1991; pp. 3–20. 2

[BE08] BRYT O.; ELAD M.: Compression of facial images using the k-svd algorithm. J. Vis. Comun. Image Represent. 19 (May 2008); 270–282. 7

[CBCG02] CHEN W.-C.; BOUGUET J.-Y.; CHU M. H.; GRZESZCZUK R.: Light field mapping: efficient representation and hardware rendering of surface light fields. ACM Trans. Graph. 21 (July 2002); 447–456. 1; 2; 4

[KAMJ05] KRISTENSEN A. W.; AKENINE-MÖLLER T.; JENSEN H. W.: Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24 (July 2005); 1208–1215. 3

[KL97] KAMBHATLA N.; LEEN T. K.: Dimension reduction by local principal component analysis. Neural Comput. 9 (October 1997); 1493–1516. 2; 4

[KSL05] KAUTZ J.; SLOAN P.-P.; LEHTINEN J.: Precomputed radiance transfer: theory and practice. In ACM SIGGRAPH 2005 Courses (New York; NY; USA; 2005); SIGGRAPH ’05; ACM. 3

[LDH07] LAMBERT P.; DESCHENES J.-D.; HEBERT P.: A sampling criterion for optimizing a surface light field. In 3-D Digital Imaging and Modeling; 2007. 3DIM ’07. Sixth International Conference on (aug. 2007); pp. 47 –54. 2

[MRP98] MILLER G. S. P.; RUBIN S. M.; PONCELEON D. B.: Lazy decompression of surface light fields for precomputed global illumination. In Rendering Techniques (1998); Drettakis G.; Max N. L.; (Eds.); Springer; pp. 281–292. 1; 2

[MSRB07] MAHAJAN D.; SHLIZERMAN I. K.; RAMAMOORTHI R.; BELHUMEUR P.: A theory of locally low dimensional light transport. ACM Trans. Graph. 26 (July 2007). 2; 3

[PH04] PHARR M.; HUMPHREYS G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc.; San Francisco; CA; USA; 2004. 3; 6

[Ram09] RAMAMOORTHI R.: Precomputation-based rendering. Found. Trends. Comput. Graph. Vis. 3 (April 2009); 281–369. 3

[RHD10] REINHARD E.; HEIDRICH W.; DEBEVEC P.; PATTANAIK S.; WARD G.; MYSZKOWSKI K.: High Dynamic Range Imaging; Second Edition: Acquisition; Display; and Image-Based Lighting. Morgan Kaufmann Publishers Inc.; San Francisco; CA; USA; 2010. 3

[RK09] RUITERS R.; KLEIN R.: Btf compression via sparse tensor decomposition. Computer Graphics Forum 28; 4 (jul. 2009); 1181–1188. 3; 7

[SHHS03] SLOAN P.-P.; HALL J.; HART J.; SNYDER J.: Clusteredprincipal components for precomputed radiance transfer. ACM Trans. Graph. 22 (July 2003); 382–391. 2; 4; 5

[TB99] TIPPING M. E.; BISHOP C. M.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11 (February 1999); 443–482. 2; 4

[TS06] TSAI Y.-T.; SHIH Z.-C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensorapproximation. ACM Trans. Graph. 25 (July 2006); 967–976. 3; 7

[WAA00] WOOD D. N.; AZUMA D. I.; ALDINGER K.; CURLESS B.; DUCHAMP T.; SALESIN D. H.; STUETZLE W.: Surface light fields for 3d photography. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques (New York; NY; USA; 2000); SIGGRAPH ’00; ACM Press/Addison-Wesley Publishing Co.; pp. 287–296. 2

[WBD03] WENDONG W.; BAOCAI Y.; DDEHUI K.: Nonuniform light field compression: a geometry-based method for image processing. In Neural Networks and Signal Processing; 2003. Proceedings of the 2003 International Conference on (dec. 2003); vol. 2; pp. 1058 – 1061 Vol.2. 2

[Zha04] ZHANG C.: A survey on image-based renderingâ?A ?Trepresentation; sampling and compression. Signal Processing: Image Communication 19; 1 (jan. 2004); 1–28. 1; 2

Citeringar i Crossref