Eco-Efficiency Analysis for Hydraulic and Hybrid Concepts for Mobile Working Machines

C. Schindler
Chair of Design in Mechanical Engineering, University of Kaiserslautern, Kaiserslautern, Germany

M. Eigner
Institute for Virtual Product Engineering, University of Kaiserslautern, Kaiserslautern, Germany

C. Scholler
Chair of Design in Mechanical Engineering, University of Kaiserslautern, Kaiserslautern, Germany

P. Schæfer
Institute for Virtual Product Engineering, University of Kaiserslautern, Kaiserslautern, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1392a1

Ingår i: 13th Scandinavian International Conference on Fluid Power; June 3-5; 2013; Linköping; Sweden

Linköping Electronic Conference Proceedings 92:1, s. 1-11

Visa mer +

Publicerad: 2013-09-09

ISBN: 978-91-7519-572-8

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


The sector of construction equipment is currently in change. The scarcity of fossil resources and raw materials as well as rising energy costs in the last years and new political and technical requirements has brought the industry to a massive rethinking. A reduction of energy consumption is one of the most important innovation topics in this industry branch. In order to fulfill high energy requirements in the near future; extensive concepts; new structures and innovative technical approaches increasing the total energy efficiency of the product are needed. Therefore the importance of life cycle based eco-efficiency analysis must be considered. Life Cycle Assessment (LCA) and Eco-efficiency assessment are powerful tools for achieving design for life cycle. An LCA examines all stages of a product’s life cycle and gives a quantitative assessment of its potential environmental impact. In addition; the results of an Eco-efficiency assessment help to identify priority areas for ecological improvement which are economically worthwhile. This paper presents a comprehensive approach integrating technical analyses to recognize and evaluate possible improvement areas within the machine’s construction for doing a quantitative assessment of the environmental impact of the improved technical concepts. The paper describes how LCA and Eco-efficiency assessment can be applied for hydraulic and hybrid concepts and how it can be used to improve the environmental performance of a product in an early step of the life cycle. The approach is demonstrated on the example of a wheeled excavator


Hydraulic and Hybrid Optimization; Eco-Efficiency Assessment; Life Cycle Assessment; Product Lifecycle Management; Modular Based Simulation


1] C Holländer. Untersuchungen zur Beurteilung und Optimierung von Baggerhydrauliksystemen. Fortschritt-Berichte VDI Reihe 1(307). VDI; Düsseldorf; 1998.

2] R Finzel; H Jähne; and S Helduser. Energieeffiziente Antriebssysteme mobiler Arbeitsmaschinen. Proc. of 4. Fachtagung Baumaschinentechnik. Dresden; 2009.

[3] S Pick; M Mohr; P Schaefer; C Scholler; M Eigner; S Mueller; B Sauer; and C Schindler. Lifecycle based Evaluation of new Energy- and Resource-Efficient Concepts for Mobile Working Machines. Proc. of the 2nd Commercial Vehicle Technology Symposium. Shaker; Aachen; 2012; pp. 319-328.

[4] J Blank. Sustainable Development. Lexikon Nach-haltiges Wirtschaften. Oldenbourg; München; Wien; 2001; pp. 374-385.

[5] M Eigner; M von Hauff; and P Schaefer. Sustainable Product Lifecycle Management - A Lifecycle based Conception of Monitoring a Sustainable Product Development. Glocalized Solutions for Sustainability in Manufacturing. Springer; Berlin; Heidelberg; 2011; pp. 501-506.

[6] S Terzi; A Bouras; D Dutta; M Garetti; and D Kiritsis. Product Lifecycle Management – from its history to its new role. Int. J. Product Lifecycle Management; 4(4); pp. 360-389. 2010

[7] B Bras. Sustainability and product life cycle management - issues and challenges. Int. J. Product Life Cycle Management; 4(1/2/3); pp. 23-48. 2009

[8] M Eigner; and P Schaefer. Sustainable Product Life-cycle Management - A Lifecycle based Conception of Monitoring a Global Product Development in a Sustainability-Driven Century. Openness for Global Success - ProSTEP iViP Symposium 2013. Hannover; 2013; p. 70.

[9] ISO 14040. Environmental management - Life cycle assessment - Principles and framework. Beuth; Berlin; 2006.

[10] ISO 14045. Environmental management - Eco-efficiency assessment of product systems - Principles; requirements and guidelines. Beuth; Berlin; 2012.

[11]W Kloepffer. Life Cycle based methods for sustainable product development. Int. J. of Life Cycle Assessment; 8(3): pp. 157-159; Springer; Berlin; 2003.

[12] ISO 14044. Environmental management - Life cycle assessment - Requirements and guidelines. Beuth; Berlin; 2006.

[13]W Kloepffer; and B Grahl. Oekobilanz (LCA) – Ein Leitfaden für Ausbildung und Beruf. Wiley-Vch; Weinheim; 2009.

[14] E Baroulaki; and A Veshagh. Eco-Innovation – Product Design and Innovation for the Environment. Advances in Life Cycle Engineering for Sustainable Manu-facturing Businesses. Springer; London; 2007.

[15] P Pickel; M Eigner. Life Cycle Assessment (LCA) and its importance for the agriculture sector. Proc. of the 23rd Annual Meeting of the Club of Bologna. Bologna; 2012.

[16] World Business Council for Sustainable Development. Eco-efficiency – Creating more value with less impact. 2000.

[17] S Feickert. Oekologisches Product Lifecycle Management – Ein Integrationskonzept der oeko-logischen Produktbilanzierung in betrieblichen ERP-Systemen. Aachen; 2007.

[18] N Ciceri; M Garetti; and S Terzi. Product Lifecycle Management Approach for Sustainability. Proc. of the 19th CIRP Design Conference. Cranfield; 2009; pp. 147-154.

[19] K Ramani; D Ramanujan; W Bernstein; F Zhao; J Sutherland; C Handwerker; J Choi; H Kim; and D Thurston. Integrated Sustainable Life Cycle Design – A Review. J of Mechanical Design; 132. 2010

[20] M Eigner; P Schaefer; and H Apostolov. Leveraging Product Development for a Sustainable Future - Energy and Resource Efficiency in Lifecycle Analysis. Smart Product Engineering; Proc. of the 23rd CIRP Design Conference. Springer; Berlin; Heidelberg; 2013; pp. 725-734.

[21] M Eigner; and R Stelzer. Product Lifecycle Management - Ein Leitfaden für Product Development und Life Cycle Management. 2. Ed.; Springer; Berlin; Heidelberg; 2009.

[22] M Kwak; and H Kim. Exploring Opportunities to Improve Life Cycle Environmental Performance of a Complex Product. Smart Product Engineering; Proc. of the 23rd CIRP Design Conference. Springer; Berlin; Heidelberg; 2013; pp. 735-744.

[23] A Posch; and E Perl. Regionale Verwertungsnetze und industrielle Symbiose. Industrial Ecology - Mit Oekologie zukunftsorientiert wirtschaften. Elsevier; München; 2007; pp. 265-276.

[24] C Scholler; and C Schindler. Simulation der Energieverteilung innerhalb eines Load-Sensing-Ventils im Mehrverbraucherbetrieb am Beispiel eines Mobilbaggers. Proc. of the 5. Fachtagung Bau-maschinentechnik 2012. Dresden; 2012; pp- 309 - 324.

[25] S Pick; S Mueller; P Bach; and U Fass. Future Wheeled Excavator - Higher Efficiency by Electrification. Proc. of the Aachener Colloquium Automobile and Engine Technolog. Aachen 2012; pp. 1577-1594.

[26] M Mohr; and B Sauer. Optimierung der Energie- und Ressourceneffizienz eines Mobilbaggers im Rahmen von ERMA. Proc. of the Antriebstechnisches Kolloquium ATK 2013. Aachen; 2013; pp. 193-220.

[27] C Scholler; C Schindler; S Pick; and S Mueller. Modularer Simulationsbaukasten zur Potenzial-abschaetzung hydraulischer und hybrider Konzepte. Hybridantriebe für mobile Arbeitsmaschinen; Proc. of the 4. Fachtagung des VDMA und des Karlsruher Instituts für Technologie. KIT Scientific Publishing; Karlsruhe; 2013; pp. 61-72.

[28]VDI 2206. Design methodology for mechatronic systems. Beuth; Berlin; 2004.

[29] R Finzel; S Helduser; and D Jang. Electro-hydraulic Dual-Circuit System to improve the energy efficiency of Mobile Machines. Proc. of the 7th International Fluid Power Conference Aachen. Aachen; 2010.

[30] M Kagoshima; M Komiyama; T Nanjo; and A Tsutsui. Development of New Hybrid Excavator. Kobelco Technology Review; 2007; pp. 39-42.

[31] J Stark. Product Lifecycle Management – 21st Century Paradigm for Product Realisation. Springer; London; 2011.

[32] U Sendler. Das PLM Kompendium – Referenzbuch des Produktlebenszyklus Management. Springer; Berlin; Heidelberg; 2009.

[33] M Grieves. Product Lifecycle Management – Driving the next generation of lean thinking. New York; 2006.

[34] L Barreto; H Anderson; A Anglin; and C Tomovic. Product Lifecycle Management in support of green

manufacturing – Addressing the challenges of global climate change. Int. J. of Manufacturing Technology and Management; 19(3/4); pp. 294-305. 2010.

[35] A Moeller; and A Rolf. Eco Product Lifecycle Management. Proc. of the 2nd International Symposium on Environmentally Conscious Design and Inverse Manufacturing. Tokyo; 2001; pp. 739-744.

[36] A Abele; S Feickert; D Kuhrke; and F Clesle. Environmental Product Lifecycle Management – Customizing the Enterprise Specific Manufacturing Processes. Proc. of the 13th CIRP International Conference on Life Cycle Engineering. Leuven; 2006; pp. 651-656

[37] A Staisch; G Peters; T Stueckl; and J Sergua. Current Trends in Product Lifecycle Management. Proc. of the 23rd Conference on Information Systems. Geelong; 2012.

[38] H Demel. Comparison of the well-to-wheel energy efficiency of different vehicle concepts. Proc. of the 30th International Wiener Motorensymposium. Wien; 2009.

[39] M Eigner; and P Schaefer. Nachhaltige Produktentwicklung im Bau von mobilen Arbeitsmaschinen mit PTC Windchill und PTC Windchill Product Analytics. PTC Live 2012; Stuttgart; 2012.

Citeringar i Crossref