Context-based polynomial extrapolation and slackened synchronization for fast multi-core simulation using FMI

Abir Ben Khaled
IFP Energies nouvelles, Rueil-Malmaison, France

Laurent Duval
IFP Energies nouvelles, Rueil-Malmaison, France

Mongi Ben Gaid
IFP Energies nouvelles, Rueil-Malmaison, France

Daniel Simon
INRIA and LIRMM - DEMAR team, Montpellier, France

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp14096225

Ingår i: Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Linköping Electronic Conference Proceedings 96:23, s. 225-234

Visa mer +

Publicerad: 2014-03-10

ISBN: 978-91-7519-380-9

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


The growing complexity of systems; together with increasing available parallelism provided by multi-core chips; calls for the parallelization of simulation. Simulation speed-ups are expected from co-simulation and parallelization based on models splitting into loosely coupled sub-systems in the framework of Functional Mockup Interface (FMI). However; slackened synchronization between the sub-models and associated solvers running in parallel introduces integration errors; which must be kept inside predefined bounds. In this paper; context-based extrapolation is investigated to improve the trade-off between integration speed-ups; needing large communication steps; and simulation precision; needing frequent updates for the models inputs. An internal combustion engine; based on FMI for model exchange; is used to assess the parallelization methodology.


FMI; parallel simulation; signal processing; polynomial extrapolation; real-time; contextbased decision


[1] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss, H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S.Wolf. The functional mockup interface for tool independent exchange of simulation models. In 8th Int. Modelica Conf., Germany, Mar. 2011.

[2] M. Valasek. Simulation Techniques for Applied Dynamics, chapter Modeling, simulation and control of mechatronical systems. Volume 507 of Arnold and Schiehlen [8], 2008. Courses and Lectures.

[3] C. Faure, M. Ben Gaïd, N. Pernet, M. Fremovici, G. Font, and G. Corde. Methods for real-time simulation of cyberphysical systems: application to automotive domain. In IEEE Int. Wirel. Comm. Mobi. Comput. Conf. IWCMC’11, pages 1105–1110, 2011.

[4] A. Ben Khaled, M. Ben Gaïd, D. Simon, and G. Font. Multicore simulation of powertrains using weakly synchronized model partitioning. In E-COSM’12 IFAC Workshop on Engine and Powertrain Control Simulation and Modeling, Rueil-Malmaison, France, Oct. 2012.

[5] M. Sjölund, R. Braun, P. Fritzson, and P. Krus. Towards efficient distributed simulation in Modelica using transmission line modeling. In 3rd Int. Workshop on Equation-Based Object-Oriented Modeling Languages and Tools EOOLT, pages 71–80. Linköping Univ. Electronic Press, 2010.

[6] F. Zhang, M. Yeddanapudi, and P. Mosterman. Zerocrossing location and detection algorithms for hybrid system simulation. In Proc. 17th IFAC World Congress, pages 7967–7972, Seoul, South Korea, Jul. 2008.

[7] M. Arnold, C. Clauss, and T. Schierz. Error analysis and error estimates for co-simulation in FMI for model exchange and co-simulation V2.0. Arch. Mech. Eng., LX(1):6–156, 2013. DOI: 10.2478/meceng-2013-0005

[8] M. Arnold andW. Schiehlen, editors. Simulation Techniques for Applied Dynamics, volume 507 of CISM International Centre for Mechanical Sciences. SpringerWienNewYork, 2008. Courses and Lectures.

[9] M. J. Weinberger, G. Seroussi, and G. Sapiro. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process., 9(8):1309–1324, 2000. DOI: 10.1109/83.855427

[10] N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series. MIT Press, 1949.

[11] R. G. Brown. Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice-Hall, 1962.

[12] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and Control. Probability and Statistics. Wiley, 2008. DOI: http://dx.doi.org/10.1002/9781118619193

[13] C. Faure. Real-time simulation of physical models toward hardware-in-the-loop validation. PhD thesis, Univ. Paris-Est, 2011.

[14] R. W. Hamming. Numerical methods for scientists and engineers. Dover publications, 1973.

[15] S. M. Stigler. Gauss and the invention of least squares. Ann. Stat., 9(3):465–474, 1981. DOI: 10.1214/aos/1176345451

[16] G. F. C. de Bruyn and J. M. de Villiers. Formulas for 1+ 2p+3p +. . .+np. Fibonacci Q., 32(3):271–276, 1994.

[17] M. Arnold. Simulation Techniques for Applied Dynamics, chapter Numerical methods for simulation in applied dynamics. Volume 507 of Arnold and Schiehlen [8], 2008. Courses and Lectures.

[18] Z. Benjelloun-Touimi, M. Ben Gaïd, J. Bohbot, A. Dutoya, H. Hadj-Amor, P. Moulin, H. Saafi, and N. Pernet. From physical modeling to real-time simulation: Feedback on the use of modelica in the engine control development toolchain. In 8th Int. Modelica Conf., Dresden, Germany, 2011. Linköping Univ. Electronic Press.

[19] P. Fritzson. Principles of object-oriented modeling and simulation with Modelica 2.1. Wiley.com, 2010.

[20] M. Ben Gaïd, G. Corde, A. Chasse, B. Léty, R. De La Rubia, and M. Ould Abdellahi. Heterogeneous model integration and virtual experimentation using xMOD : Application to hybrid powertrain design and validation. In 7th EUROSIM Congress on Modeling and Simulation, Prague, Czech Republic, Sep. 2010.

[21] C. Chaux, J.-C. Pesquet, and L. Duval. Noise covariance properties in dual-tree wavelet decompositions. IEEE Trans. Inform. Theory, 53(12):4680–4700, Dec. 2007. DOI: 10.1109/TIT.2007.909104

Citeringar i Crossref