Simulating Rhapsody SysML Blocks in Hybrid Models with FMI

Yishai A. Feldman
IBM Research – Haifa, Israel

Lev Greenberg
IBM Research – Haifa, Israel

Eldad Palachi
Rational, IBM Israel, Rehovot, Israel

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1409643

Ingår i: Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Linköping Electronic Conference Proceedings 96:4, s. 43-52

Visa mer +

Publicerad: 2014-03-10

ISBN: 978-91-7519-380-9

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


The Functional Mockup Interface (FMI) standard enables hybrid simulation of models from different tools. Such tools can have different underlying behavioral semantics; creating challenges when models are combined. A case in point is the combination of the Rhapsody tool; widely used to describe and implement discrete control behavior; and Modelica; widely used to describe continuous plant behavior.

This paper describes a plugin we developed for exporting Functional Mockup Units (FMUs) from Rhapsody; and the results of combining generated FMUs with continuous models. When a Rhapsody FMU is used in a different environment; some basic assumptions on its behavior are challenged. We describe the semantic mismatches between the tools; to what extent they can be overcome; and what modelers need to do in order to preserve the intended semantics of an exported FMU.


FMI; Rhapsody; SysML; Hybrid simulation


[1] S. Becker, C. Brenner, C. Brink, S. Dziwok, C. Heinzemann, U. Pohlmann, W. Schäfer, J. Suck, O. Sudmann, and R. Löffler. The MechatronicUML design method – process, syntax, and semantics. Technical Report tr-ri-12-326, Heinz Nixdorf Institute, University of Paderborn, 2012.

[2] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, and M. Wetter. Determinate composition of FMUs for co-simulation. In Proc. Int’l Conf. Embedded Software (EMSOFT), pages 1–12, 2013.

[3] D. Broman, E. A. Lee, S. Tripakis, and M. Törngren. Viewpoints, formalisms, languages, and tools for cyber-physical systems. In Proc. 6th Int’l Workshop on Multi-Paradigm Modeling, 2012. DOI: 10.1145/2508443.2508452

[4] L. P. Carloni, R. Passerone, A. Pinto, and A. L. Sangiovanni-Vincentelli. Languages and tools for hybrid systems design. Foundations and Trends in Electronic Design Automation, 1(1–2), 2006.

[5] P. Derler, E. A. Lee, and A. L. Sangiovanni-Vincentelli. Modeling cyber-physical systems. Proceedings of the IEEE, 100(1):13–28, 2012. DOI: 10.1109/JPROC.2011.2160929

[6] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Computer Programming, pages 231–274, 1987. DOI: 10.1016/0167-6423(87)90035-9

[7] D. Harel and H. Kugler. The Rhapsody semantics of statecharts (or, on the executable core of the UML). In Integration of Software Specification Techniques for Applications in Engineering, pages 325–354. Springer, 2004. DOI: 10.1007/978-3-540-27863-4_19

[8] U. Pohlmann, W. Schäfer, H. Reddehase, J. Röckemann, and R. Wagner. Generating functional mockup units from software specifications. In Proc. 9th Int’l Modelica Conf., pages 765–774, 2012.

[9] T. Sakairi, E. Palachi, C. Cohen, Y. Hatsutori, J. Shimizu, and H. Miyashita. Designing a control system using SysML and Simulink. In Proc. SICE Annual Conf., pages 2011–2017, 2012.

[10] W. Schamai. Modelica modeling language (ModelicaML): A UML profile for Modelica. Technical report, Linköping University, 2009.

[11] W. Schamai, U. Pohlmann, P. Fritzson, C. J. J. Paredis, P. Helle, and C. Strobel. Execution of UML state machines using Modelica. In Third Int’l Workshop on Equation-Based Object-Oriented Modeling Languages and Tools (EOOLT), pages 1–10, 2010.

Citeringar i Crossref