Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface

Jonathan Brembeck
German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany

Andreas Pfeiffer
German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany

Michael Fleps-Dezasse
German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany

Martin Otter
German Aerospace Center (DLR), Institute of System Dynamics and Control, Germany

Karl Wernersson
Dassault Systèmes AB, Ideon Science Park, Lund, Sweden

Hilding Elmqvist
Dassault Systèmes AB, Ideon Science Park, Lund, Sweden

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1409653

Ingår i: Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Linköping Electronic Conference Proceedings 96:5, s. 53-62

Visa mer +

Publicerad: 2014-03-10

ISBN: 978-91-7519-380-9

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


In this paper we propose a method how to automatically utilize continuous-time Modelica models directly in nonlinear state estimators. The approach is based on an extended FMI 2.0 Co-Simulation Interface that interacts with the state estimation algorithm implemented in a Modelica library. Besides a short introduction to Kalman Filter based state estimation; we give details on a generic interface to interact with FMUs in Modelica; an implementation of nonlinear state estimation based on this interface; and the Dymola prototype used for the evaluation. Finally we show first results in a tire load estimation application for our robotic electric research platform ROMO.


FMI 2.0 Co-Simulation; FMU; Inline Integration; Kalman Filter; State Estimation; Moving Horizon Estimation; Tire Load Estimation


[1] Functional Mockup Interface for Model Exchange and Co-Simulation 2.0 RC1, Modelica Association, 18.10.2013. [Online]. Available [Accessed 25.1.2014]: https://www.fmi-standard.org/downloads#version2.

[2] J. Brembeck, M. Otter and D. Zimmer, Nonlinear Observers based on the Functional Mockup Interface with Applications to Electric Vehicles, in Proceedings of 8th International Modelica Conference, Dresden, 2011. Available [Accessed 25.1.2014]: http://www.ep.liu.se/ecp/063/053/ecp11063053.pdf.

[3] M. Fleps-Dezasse and J. Brembeck, Model based vertical dynamics estimation with Modelica and FMI, in IFAC ACC, National Olympics Memorial Youth Center, Tokyo, Japan, 2013.

[4] J. Brembeck, L. M. Ho, A. Schaub, C. Satzger, J. Tobolar, J. Bals and G. Hirzinger, ROMO - the robotic electric vehicle, in 22nd IAVSD International Symposium on Dynamics of Vehicle on Roads and Tracks, Manchester, 11.-14. Aug. 2011.

[5] Modrio ITEA2, [Online]. Available [Accessed 25.1.2014]: https://modelica.org/external-projects/modrio http://www.itea2.org/project/index/view/?project=10114.

[6] C. Engst, Object-Oriented Modelling and Real-Time Simulation of an Electric Vehicle in Modelica, Masters Thesis, TUM EAL Munich, 2010.

[7] Functional Mock-up Interface for Model Exchange,Version 1.0, 25 January 2010. [Online]. Available [Accessed 25.1.2014]: https://www.fmistandard.org/downloads#version1.

[8] J. Hartikainen and S. Särkkä, Optimal filtering with Kalman filters and smoothers - A Manual for Matlab toolbox EKF/UKF, February 2008. [Online]. Available [Accessed 25.1.2014]: http://www.lce.hut.fi/research/mm/ekfukf/.

[9] B. Houska, H. J. Ferreau and M. Diehl, ACADO toolkit – An open-source framework for automatic control and dynamic optimization, Optimal Control pplications& Methods, vol. 32, no. 3, pp. 298-312, 2010.

[10] D. Simon, Kalman filtering with state constraints: a survey of linear and nonlinear algorithms, IET Control Theory & Applications, vol. 4, no. 8, p. 1303+, 2010.

[11] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, 1. Edition ed., Wiley & Sons, 2006.

[12] J. Brembeck, Method to extend models for system design to models for system operation, MODRIO First Project Report, Munich, 2013.

[13] S. J. Julier and J. K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE, vol. 92, no. 3, pp. 401-422, March 2004. DOI: 10.1109/JPROC.2003.823141

[14] S. Haykin, Kalman Filtering and Neural Networks, Wiley-Interscience, 2001. DOI: 10.1002/0471221546

[15] J. Rosen, The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints, Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 1, pp. 181-217, 1960. DOI. 10.1137/0108011

[16] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban and D. E. Shumaker, SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, ACM Transactions on Mathematical Software, vol. 31(3), pp. 363-369, 2005. Software: Available [Accessed 25.1.2014] http://computation.llnl.gov/casc/sundials/main.html.

[17] H. Elmqvist, F. Cellier and M. Otter, Inline Integration: A new mixed symbolic/numeric approach for solving differential-algebraic equation systems, in European Simulation Multiconference, Prague, 1995. Available [Accessed 25.1.2014] http://www.inf.ethz.ch/personal/fcellier/Pubs/OO/esm_95 pdf.

[18] M. Mitschke and H. Wallentowitz, Dynamik der Kraftfahrzeuge, Berlin: Springer, 2004. DOI: 10.1007/978-3-662-06802-1

[19] R. Williams, Electronically controlled automotive suspensions, Computing Control Engineering Journal, vol. 5, no. 3, pp. 143-148, jun 1994. DOI: 10.1049/cce:19940310

[20] S. Savaresi, C. Poussot-Vassal, C. Spelta, O. Sename and L. Dugard, Semi-Active Suspension Control Design for Vehicles, Elsevier Science, 2010.

[21] E. Guglielmino, Semi-active suspension control - Improved vehicle ride and road friendliness, London: Springer, 2008.

[22] G. Koch, T. Kloiber, E. Pellegrini and B. Lohmann, A nonlinear estimator concept for active vehicle suspension control, in Proc. American Control Conf. (ACC), Baltimore, 2010.

Citeringar i Crossref