Konferensartikel

An FMI-based Framework for State and Parameter Estimation

Marco Bonvini
Simulation Research Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Michael Wetter
Simulation Research Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Michael D. Sohn
Simulation Research Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp14096647

Ingår i: Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Linköping Electronic Conference Proceedings 96:68, s. 647-656

Visa mer +

Publicerad: 2014-03-10

ISBN: 978-91-7519-380-9

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

This paper proposes a solution for creating a model-based state and parameter estimator for dynamic systems described using the FMI standard. This work uses a nonlinear state estimation technique called unscented Kalman filter (UKF); together with a smoother that improves the reliability of the estimation. The algorithm can be used to support advanced control techniques (e.g.; adaptive control) or for fault detection and diagnostics (FDD). This work extends the capabilities of any modeling framework compliant with the FMI standard version 1.0.

Nyckelord

Nonlinear State and Parameter Estimation; Unscented Kalman Filter (UKF); Smoothing; Functional Mockup Interface (FMI); Fault Detection and Diagnosis (FDD)

Referenser

[1] S. J. Julier and J. K. Uhlmann. A general method for approximating nonlinear transformations of probability distributions. Robotics Research Group Technical Report, Department of Engineering Science, University of Oxford, pages 1–27, November 1996.

[2] S.J. Julier. The scaled unscented transformation. In American Control Conference, 2002. Proceedings of the 2002, volume 6, pages 4555–4559 vol.6, 2002.

[3] Simon S Haykin et al. Kalman filtering and neural networks. Wiley Online Library, 2001.

[4] D. Crisan and Arnaud Doucet. A survey of convergence results on particle filtering methods for practitioners. Signal Processing, IEEE Transactions on, 50(3):736–746, 2002.

[5] Modelon AB. PyFMI a package for working with dynamic models compliant with the functional mock-up interface standard, September 2013.

[6] E.A. Wan and R. Van der Merwe. The unscented kalman filter for nonlinear estimation. In Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–158, 2000.

[7] S. Sarkka. On unscented kalman filtering for state estimation of continuous-time nonlinear systems. Automatic Control, IEEE Transactions on, 52(9):1631–1641, 2007.

[8] S. Sarkka. Unscented rauch–tung–striebel smoother. Automatic Control, IEEE Transactions on, 53(3):845–849, 2008.

[9] Venkat Venkatasubramanian, Raghunathan Rengaswamy, Kewen Yin, and Surya N. Kavuri. A review of process fault detection and diagnosis: Part I: Quantitative model-based methods. Computers & Chemical Engineering, 27(3):293–311, 2003.

[10] Venkat Venkatasubramanian, Raghunathan Rengaswamy, and Surya N Kavuri. A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies. Computers& Chemical Engineering, 27(3):313 – 326, 2003.

[11] Venkat Venkatasubramanian, Raghunathan Rengaswamy, Surya N. Kavuri, and Kewen Yin. A review of process fault detection and diagnosis: Part III: Process history based methods. Computers& Chemical Engineering, 27(3):327 – 346, 2003.

[12] Michael Wetter, Wangda Zuo, Thierry S Nouidui, and Xiufeng Pang. Modelica buildings library. Journal of Building Performance Simulation, (In press):1–18, 2013.

Citeringar i Crossref