Konferensartikel

The OneWind<sup>&#8482;</sup> Modelica Library for Wind Turbine Simulation with Flexible Structure - Modal Reduction Method in Modelica

Philipp Thomas
Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Bremerhaven, Germany

Xin Gu
Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Bremerhaven, Germany

Roland Samlaus
Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Bremerhaven, Germany

Claudio Hillmann
Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Bremerhaven, Germany

Urs Wihlfahrt
Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Bremerhaven, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp14096939

Ingår i: Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Linköping Electronic Conference Proceedings 96:98, s. 939-948

Visa mer +

Publicerad: 2014-03-10

ISBN: 978-91-7519-380-9

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

The OneWind® Modelica Library for couplewind turbine loads calculation developed at Fraunhofer IWES uses a structural element based on a modal reduction method to model the motion and deformation of flexible wind turbine rotor blades and tower. The degrees of freedom (DOF) are rigid body motions and modal DOF. The ModalElement model allows the simulation of coupling effects like bend-twist coupling in wind turbine rotor blades and the structural behavior is dependent on the selected eigenmodes. This paper gives an overview about the Modelica implementation of the theory of modal elements; the advantages over other methods (finite-elements); how the ModalElement model is included into the OneWind® Modelica Library; and how it is used for load calculation.

Nyckelord

Modal; blade; OneWind; OneModelica; load calculation; wind turbine loads; coupled wind turbine simulation

Referenser

[1] Betz A. Das Maximum der theoretisch möglichen Ausnutzung des Windes durch Windmotoren. In: Zeitschrift für das gesamte Turbinenwesen, 26:307-309, 1920.

[2] Froude R.E. On the part played in propulsion by differences of fluid pressure, translations of the Institution of Naval Architects, 30:390-405, 1889.

[3] Glauert H., Division L. Airplane propellers, aerodynamic theory, volume 4, Durand WF, Berlin, Germany, 1935.

[4] He C. Development and Application of a Generalized Dynamic Wake Theory for Lifting Rotors, PhD thesis, Georgia Institute of Technology, 1989.

[5] IEC. Wind turbines – Part 3: Design requirements for offshore wind turbines, IEC 61400-3, 1.0 edition, 2009.

[6] Izumi Y., Kaimal J.C., Wyngaard J.C., Cote O.R Spectral characteristics of surface-layer turbulence. In: Q.J.R. Meteorol. Soc., volume 98, pp. 563-598, 1972.

[7] Jonkman J., Butterfield S., Musial W., Scott G. Definition of a 5-MW reference wind turbine for offshore system development, Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory (NREL), Golden, Colorado, USA, 2009.

[8] Jonkman J., Kilcher L. TurbSim user’s guide: version 1.06.00, National Renewable Energy Laboratory (NREL), Golden, Colorado, USA, 2012.

[9] Otter M. Modeling, simulation and control with Modelica 3.0 and Dymola 7, technical report, Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR - Institut für Robotik und Mechatronik, Wessling, Germany, 2009.

[10] PopkoW., Vorpahl F. Offshore Code Comparison Collaboration (OC4) Project – Task 30. In: IEA Wind 2012 Annual Report, Chapter 10, 45-48, PWT Communications, July 2013.

[11] RankineW.J. On the mechanical principles of the action of propellers, translations of the Institution of Naval Architects, 6:13-30, 1865.

[12] Samlaus R, Hillmann C, Demuth B, Krebs M. Towards a model driven Modelica IDE. In: Proceedings of the 8th International Modelica Conference 2011, Dresden, Germany, Modelica Association, 20-22 March 2011.

[13] Samlaus R., Strach M., Hillmann C., Fritzson P. MoUnit – A framework for automatic Modelica model testing, 10th International Modelica Conference 2014, Lund, Schweden, 2014.

[14] Shabana, Ahmed A. Dynamics of multiboy systems, Cambridge University Press, New York, USA, 2005.

[15] Strobel M., Vorpahl R., Hillmann C., Gu X., Zuga A.,Wihlfahrt U. The OnWind Modelica Library for offshore wind turbines – Implementation and first results. In: Proceedings of the 8th International Modelica Conference 2011, Dresden, Germany, Modelica Association, pp. 603-609, 20-22 March 2011.

[16] Suzuki, A. Application of Dynamic In ow Theory to Wind Turbine Rotors, PhD thesis, The University of Utah, 2000.

[17] Vorpahl F., Strobel M., Jonkman J., Larsen T., Passon P. and Nichols J. Verification of aeroelastic offshore wind turbine design codes under IEA Wind Task XXIII. Wind Energy, doi: 10.1002/we.1588.

[18] Wojciech P., Vorpahl F. et al. Offshore Code Comparison Collaboration Continuation (OC4), Phase I – Results of coupled simulations of an offshore wind turbine with jacket support structure. In: Proceedings of the 22nd International Offshore and Polar Engineering Conference (ISOPE), Rhodes, Greece, International Society of Offshore and Polar Engineers, pp. 337-346, June 2012.

Citeringar i Crossref