Håkan Runvik
Modelon AB, Lund, Sweden
Per-Ola Larsson
Modelon AB, Lund, Sweden
Stéphane Velut
Modelon AB, Lund, Sweden
Jonas Funkquist
Vattenfall R&D, Stockholm, Sweden
Markus Bohlin
SICS Swedish ICT, Kista, Sweden
Andreas Nilsson
SICS Swedish ICT, Kista, Sweden
Sara Modarrez Razavi
SICS Swedish ICT, Kista, Sweden
Ladda ner artikelhttp://dx.doi.org/10.3384/ecp15118217Ingår i: Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015
Linköping Electronic Conference Proceedings 118:23, s. 217-223
Publicerad: 2015-09-18
ISBN: 978-91-7685-955-1
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
The short term production planning optimization problem for a district heating system is solved in two steps by integrating physics-based models into the standard approach. In the first step the unit commitment problem (UCP) is solved using mixed integer linear models and standard mixed-integer solvers. In the second step the economic dispatch problem is solved, utilizing the unit statuses from the UCP. This step involves dynamic optimization of non-linear physics-based models. Both optimizations aim at maximizing the production profit.
The modeling has focused on distributed consumption and production. Optimization results show that modeling of the district heating net impacts the production planning in several ways, with results such as reduction of production peaks and delay of costly unit start-ups.
The physics-based modeling and dynamic optimization techniques provide a flexible way to formulate the optimization problem and include constraints of physically important variables such as supply temperature, pressures and mass flows.
J. Arroyo and A. Conejo. Modeling of start-up and shutdown power trajectories of thermal units. Power Systems, IEEE Transactions on, 19(3): 1562–1568, August 2004. doi: 10.1109/TPWRS.2004.831654
Gurobi Optimization. 2015. Accessed 29 April 2015<http://www.gurobi.com>.
P.-O. Larsson, S. Velut, H. Runvik, S. Modarres Razavi, A. Nilsson, M. Bohlin och J. Funkquist. Decision Support for Short-Term Production Planning of District Heating using Non-linear Programming. Värmeforsk, 2014.
Fredrik Magnusson. Collocation Methods in JModelica.org. Master’s thesis. 2012
Andrew Makhorin. 2012. GNU Project. Accessed 22 October 2014. < https://www.gnu.org/software/glpk/>.
Modelon AB, 2014. Accessed 22 October 2014.<http://www.jmodelica.org>.
B. Rolfsman. Combined heat-and-power plants and district heating in a deregulated electricity market. Applied Energy, 78(1):37 – 52, 2004. doi: 10.1016/S0306-2619(03)00098-9
A. Rong, H. Hakonen, and R. Lahdelma. A variant of dynamic programming algorithm for unit commitment of combined heat and power systems. European Journal of Operational Research, 190(3):741–755, November 2008. doi: 10.1016/j.ejor.2007.06.035
L. Saarinen, and K. Boman. Optimized district heating supply temperature for large networks. Värmeforsk, 2012.
Bengt Sundén. Värmeöverföring. Studentlitteratur, 2006
S. Velut, P.-O. Larsson, J. Windahl, K. Boman, and L. Saarinen. Non-linear and Dynamic Optimization for Shortterm Production Planning. Värmeforsk, 2013.
A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, vol. 196, no 1, pp. 25-68, 2006. doi: 10.1007/s10107-004-0559-y
J. Åkesson, C. Laird, K. Lavedan, K. Prölss, H. Tummescheit, S. Velut and Y. Zhu. Nonlinear Model Predictive Control of a CO2 Post-Combustion Unit.
Chemical Engineering Technology, vol. 35, no 3, pp. 445-454, 2011. doi: 10.1002/ceat.201100480