Konferensartikel

Production Planning for Distributed District Heating Networks with JModelica.org

Håkan Runvik
Modelon AB, Lund, Sweden

Per-Ola Larsson
Modelon AB, Lund, Sweden

Stéphane Velut
Modelon AB, Lund, Sweden

Jonas Funkquist
Vattenfall R&D, Stockholm, Sweden

Markus Bohlin
SICS Swedish ICT, Kista, Sweden

Andreas Nilsson
SICS Swedish ICT, Kista, Sweden

Sara Modarrez Razavi
SICS Swedish ICT, Kista, Sweden

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp15118217

Ingår i: Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015

Linköping Electronic Conference Proceedings 118:23, s. 217-223

Visa mer +

Publicerad: 2015-09-18

ISBN: 978-91-7685-955-1

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

The short term production planning optimization problem for a district heating system is solved in two steps by integrating physics-based models into the standard approach. In the first step the unit commitment problem (UCP) is solved using mixed integer linear models and standard mixed-integer solvers. In the second step the economic dispatch problem is solved, utilizing the unit statuses from the UCP. This step involves dynamic optimization of non-linear physics-based models. Both optimizations aim at maximizing the production profit. The modeling has focused on distributed consumption and production. Optimization results show that modeling of the district heating net impacts the production planning in several ways, with results such as reduction of production peaks and delay of costly unit start-ups. The physics-based modeling and dynamic optimization techniques provide a flexible way to formulate the optimization problem and include constraints of physically important variables such as supply temperature, pressures and mass flows.

Nyckelord

district heating; physical modeling; distribution; optimization

Referenser

J. Arroyo and A. Conejo. Modeling of start-up and shutdown power trajectories of thermal units. Power Systems, IEEE Transactions on, 19(3): 1562–1568, August 2004. doi: 10.1109/TPWRS.2004.831654

Gurobi Optimization. 2015. Accessed 29 April 2015<http://www.gurobi.com>.

P.-O. Larsson, S. Velut, H. Runvik, S. Modarres Razavi, A. Nilsson, M. Bohlin och J. Funkquist. Decision Support for Short-Term Production Planning of District Heating using Non-linear Programming. Värmeforsk, 2014.

Fredrik Magnusson. Collocation Methods in JModelica.org. Master’s thesis. 2012

Andrew Makhorin. 2012. GNU Project. Accessed 22 October 2014. < https://www.gnu.org/software/glpk/>.

Modelon AB, 2014. Accessed 22 October 2014.<http://www.jmodelica.org>.

B. Rolfsman. Combined heat-and-power plants and district heating in a deregulated electricity market. Applied Energy, 78(1):37 – 52, 2004. doi: 10.1016/S0306-2619(03)00098-9

A. Rong, H. Hakonen, and R. Lahdelma. A variant of dynamic programming algorithm for unit commitment of combined heat and power systems. European Journal of Operational Research, 190(3):741–755, November 2008. doi: 10.1016/j.ejor.2007.06.035

L. Saarinen, and K. Boman. Optimized district heating supply temperature for large networks. Värmeforsk, 2012.

Bengt Sundén. Värmeöverföring. Studentlitteratur, 2006

S. Velut, P.-O. Larsson, J. Windahl, K. Boman, and L. Saarinen. Non-linear and Dynamic Optimization for Shortterm Production Planning. Värmeforsk, 2013.

A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, vol. 196, no 1, pp. 25-68, 2006. doi: 10.1007/s10107-004-0559-y

J. Åkesson, C. Laird, K. Lavedan, K. Prölss, H. Tummescheit, S. Velut and Y. Zhu. Nonlinear Model Predictive Control of a CO2 Post-Combustion Unit.
Chemical Engineering Technology, vol. 35, no 3, pp. 445-454, 2011. doi: 10.1002/ceat.201100480

Citeringar i Crossref