Marek Matejak
Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
Martin Tribula
Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
Filip Ježek
Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
Jiri Kofranek
Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague / Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
Ladda ner artikelhttp://dx.doi.org/10.3384/ecp15118359Ingår i: Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015
Linköping Electronic Conference Proceedings 118:38, s. 359-366
Publicerad: 2015-09-18
ISBN: 978-91-7685-955-1
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
A new, free Modelica library for electrochemical processes has been released. It is based on equilibrating the electrochemical potentials of the substances involved, following the modern theories of physical chemistry. It describes the chemical equilibration of homogeneous chemical solutions with fully thermodynamic states, supported through thermal, mechanical and electrical components of Modelica Standard Library 3.2.1. Even the complex processes can be composed from only a few base components, such as a component for the chemical solution, a component for the chemical substance or a component for the chemical reaction. Behind these components are fundamental laws of thermodynamics and physical chemistry. The library was designed to be very intuitive and easy to use. This paper shows how the library can be used to implement the examples of a lead-acid battery, a hydrogen-burning engine and the chloride shift of human red blood cells.
Modelica library; physical chemistry; thermodynamics equilibria; electrochemical potential; electrochemical cell; internal energy; semipermeable membrane
Casella, F., et al. The Modelica Fluid and Media library for modeling of incompressible and compressible thermofluid pipe networks. In, Proceedings of the Modelica Conference. 2006. p. 631-640.
Donnan, F.G. Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 1911;17(14):572-581.
Gedde, M.M. and Huestis, W.H. Membrane potential and human erythrocyte shape. Biophys. J. 1997;72(3):1220.
Hester, R.L., et al. HumMod: a modeling environment for the simulation of integrative human physiology. Front. Physiol. 2011;2.
Kofránek, J., Mateják, M. and Privitzer, P. HumMod - large scale physiological model in Modelica. In, 8th International Modelica Conference. Dresden, Germany; 2011.
Kulhánek, T., et al. Distributed computation and parameter estimation in identification of physiological systems. In, VPH conference. 2010.
Mateják, M. Physiology in Modelica. Mefanet J 2014;2(1):10-14.
Mateják, M. and Kofránek, J. HumMod–Golem Edition–Rozsáhlý model fyziologických systému. Medsoft 2011:182-196.
Mateják, M., Kulhánek, T. and Matoušek, S. Adair-based hemoglobin equilibrium with oxygen, carbon dioxide and hydrogen ion activity. Scand. J. Clin. Lab. Invest 2015;75(2):113-120.
Mateják, M., et al. Physiolibrary - Modelica library for Physiology. In, 10th International Modelica Conference. Lund, Sweden; 2014.
Mortimer, R.G. Physical Chemistry (Third Edition). In: Mortimer, R.G., editor. Burlington: Academic Press; 2008. p. 1-1385.
Raftos, J.E., Bulliman, B.T. and Kuchel, P.W. Evaluation of an electrochemical model of erythrocyte pH buffering using 31P nuclear magnetic resonance data. The Journal of general physiology 1990;95(6):1183-1204.