Konferensartikel

Modeling of an Automatic Transmission for the Evaluation of Test Procedures in a Virtual End-of-Line Test Bench

Jan Röper
Daimler AG, Germany

Jörn Göres
Daimler AG, Germany

Clemens Gühmann
Chair of Electronic Measurement and Diagnostic Technology, Technische Universität Berlin, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp15118547

Ingår i: Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015

Linköping Electronic Conference Proceedings 118:59, s. 547-556

Visa mer +

Publicerad: 2015-09-18

ISBN: 978-91-7685-955-1

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

End-of-line tests for automatic transmissions are mandatory to ensure quality and safety. The interaction of unit under test, test bench and test automation leads to a high complexity in the development of test automation and test procedures. Validation of test automation and test procedures requires access to the test bench and the unit under test, both of which are only available close to startup of production. Therefore, virtualization of test bench and unit under test can be used to ease the bottleneck. Virtualization is a common tool in the development of electronic control units for automotive applications using SIL and HIL technologies. The properties of simulation models for a virtual end-of-line test bench differ from those for classical SIL and HIL environments. In this paper, an automatic transmission model suitable for a virtual end-of-line test bench is presented. The required characteristics of the multiple-disk clutch friction model are discussed in detail. Hydraulics are modeled using a Moore machine to enable simulation of the pressure build-up characteristics during shift operation. With the resulting model, the influence of the key parameter of a test procedure actuating an overlapping gearshift is investigated in a virtual test system.

Nyckelord

automatic transmission; modeling; virtual test bench; HIL; SIL; end-of-line; friction; hydraulics; disk clutch

Referenser

K. Aström and T. Hägglund. PID controllers: theory, design and tuning. International Society for Measurement and Control Seattle, WA, 1995.

S. Bai, J. Maguire, and H. Peng. Dynamic Analysis and Control System Design of Automatic Transmissions. SAE International, 2013.

H. Brückmann, J. Strenkert, U. Keller, B. Wiesner, and A. Junghanns. Model-based development of a dual-clutch transmission using rapid prototyping and sil. In Getriebe in Fahrzeugen, 2009.

F. Cellier and E. Kofman. Continuous system simulation. Springer, 2006.

E. Chrisofakis, A. Junghanns, C. Kehrer, and A. Rink. Simulation-based development of automotive control software with modelica. In Proceedings 8th Modelica Conference, 2011.

J. Deur, J. Asgari, and D. Hrovat. Modeling of an automotive planetary gear set based on karnopp model for clutch friction. In ASME 2003 International Mechanical Engineering Congress and Exposition, pages 903–910. American Society of Mechanical Engineers, 2003.

C. Dörr, H. Kalczynski, A. Rink, and M. Sommer. Nine-Speed Automatic Transmission 9G-Tronic by Mercedes-Benz. ATZ worldwide eMagazines Edition:, 01:20–25, 2014.

D. Haessig and B. Friedland. On the modeling and simulation of friction. Journal of Dynamic Systems, Measurement, and Control, 113:1256–1261, 1991.

R. Isermann, J. Schaffnit, and S. Sinsel. Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Engineering Practice, 7:643 – 653, 1999.

D. Karnopp. Computer simulation of stick-slip friction in mechanical dynamic systems. Journal of dynamic systems, measurement, and control, 107:100–103, 1985.

M. Kuebler, R. Ammann, and M. Wissbach. VIP, der virtuelle Getriebe-Endpruefstand. In 16. VDI Kongress: Berechnung, Simulation und Erprobung im Fahrzeugbau, 2012. B. Lantos and L. Márton. Nonlinear Control of Vehicles and Robots. Springer-Verlag London, 2011.

J. Mare. Friction modelling and simulation at system level: a practical view for the designer. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226:728–741, 2012.

C. Mosbach. Das Reibungs- und Reibschwingverhalten nasslaufender Lamellenkupplungen. PhD thesis, Technische Universität München, 2002.

M. Otter, H. Elmqvist, and S. Mattsson. Hybrid modeling in modelica based on the synchronous data flow principle. In Computer Aided Control System Design, 1999. Proceedings of the 1999 IEEE International Symposium on, 1999.

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, and T. Gould. Numerical recipes, the art of scientific computing. Cambridge University Press, 2007.

S. Röck. Echtzeitsimulation von Produktionsanlagen mit realen Steuerungselementen. PhD thesis, Universität Stuttgart, 2007.

J. Röper, J. Göres, and C. Gühmann. Analysis of timing and jitter in real and virtual test bench for automatic transmissions. In Simulation and Testing for Automotive Electronics V, 2014.

J. Runde. Modelling and Control of an Automatic Transmission. PhD thesis, Purdue University, 1984.

J. Tomaszunas. Komponentenbasierte Maschinenmodellierung zur Echtzeit-Simulation für den Steuerungstest. PhD thesis, Techn. Univ. München, 1998.

Citeringar i Crossref