Konferensartikel

Object-Oriented Library of Switching Moving Boundary Models for Two-phase Flow Evaporators and Condensers

Javier Bonilla
Centro de Investigaciones Energåticas MedioAmbientales y Tecnológicas (CIEMAT), Plataforma Solar de Almería (PSA), Almería, Spain

Luis J. Yebra
Centro de Investigaciones Energåticas MedioAmbientales y Tecnológicas (CIEMAT), Plataforma Solar de Almería (PSA), Almería, Spain

Sebastián Dormido
National Distance Education University (UNED), Department of Computer Science and Automatic Control, Madrid, Spain

François E. Cellier
Swiss Federal Institute of Technology (ETH Zurich), Department of Computer Science, Zurich, Switzerland

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1207671

Ingår i: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Linköping Electronic Conference Proceedings 76:7, s. 71-80

Visa mer +

Publicerad: 2012-11-19

ISBN: 978-91-7519-826-2

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

This paper discusses a Modelica library of switching moving boundary models for two-phase flow heat exchangers: evaporators and condensers. The equation-based object-oriented modeling paradigm has been considered by means of designing basic models applying the conservation laws for each flow state: subcooled liquid; two-phase flow and superheated vapor. Evaporator and condenser models have been developed by interconnecting the basic models and including mechanisms to switch between different configurations: general; flooded and dry evaporators and condensers. Finally; simulation results are presented by an integrity and stability test case.

Nyckelord

moving boundary model; switching; two-phase flow; evaporator; condenser

Referenser

[1] S. Bendapudi; J. Braun; and E. Groll. A comparison of moving-boundary and finitevolume formulations for transients in centrifugal chillers. International Journal of Refrigeration; 31(8):1437–1452; December 2008. doi: 10.1016/j.ijrefrig.2008.03.006.

[2] J. Bonilla; L.J. Yebra; S. Dormido; and F.E. Cellier. Object-Oriented Modeling of Switching Moving Boundary Models for Two-phase Flow Evaporators. In Proceedings MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling; 2012.

[3] J.C. Chen. Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Industrial Engineering Chemistry Process Design and Development; 5(3):322–329; 1966. doi: 10.1021/i260019a023.

[4] N.H. Chen. An Explicit Equation for Friction Factor in Pipe. Industrial & Engineering Chemistry Fundamentals; 18(3):296–297; August 1979. doi: 10.1021/i160071a019.

[5] C.F. Colebrook. Turbulent Flow in Pipes; with particular reference to the Transition Region between the Smooth and Rough Pipe Laws. Journal of the Institution of Civil engineers; 11(4):133–156; 1939. doi: 10.1680/ijoti.1939.13150.

[6] Dassault Systèmes. Dymola 2013 - Dynamic Modeling Laboratory. http://www.3ds.com/products/catia/portfolio/dymola; 2012.

[7] M.M. Denn. Process Fluid Mechanics. Number 6. Prentice-Hall; Englewood Cliffs; 1980.

[8] M. Dhar and W. Soedel. Transient Analysis of a Vapor Compression Refrigeration System. In Proceedings of the 15th International Congress of Refrigeration; pages 1031 – 1067; Venice; Italy; 1979.

[9] F.W. Dittus and L.M.K. Boelter. Heat transfer in automobile radiators of the tubular type. University of California Publications in Engineering; 2(1):443–461; 1930.

[10] R. Franke; F. Casella; M. Sielemann; K. Proelss; M. Otter; and M. Wetter. Standardization of Thermo-Fluid Modeling in Modelica.Fluid. In Proc. of the 7th Int. Modelica Conference; pages 122–131; Italy; September 2009.

[11] V. Gnielinski. New equations for heat and mass transfer in turbulent pipe flow and channel flow. International Chemical Engineering; 2(16):359– 368; 1976.

[12] O. Goebel. Thermohydraulics of Direct Steam Generation. In Proceedings of the 9th International Symposium on Solar Thermal Concentrating Technologies; Odeillo-Font-Romeu; 1998.

[13] M. Gräber; N.C. Strupp; andW. Tegethoff. Moving Boundary Heat Echanger Model and Validation Procedure. In Proceeding of EUROSIM; 2010.

[14] E. Gungor and R.H.S. Winterton. A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer; 29(3):351–358; 1986. doi: 10.1016/0017-9310(86)90205-X.

[15] S.E. Haaland. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow. Journal of Fluids Engineering; 105(1):89–90; 1983. doi: 10.1115/1.3240948.

[16] J.M. Jensen. Dynamic modeling of Thermo-Fluid Systems-With focus on evaporators for refrigeration. PhD thesis; Technical University of Denmark; 2003.

[17] J.M. Jensen and H. Tummescheit. Moving boundary models for dynamic simulations of two-phase flows. In Proc. of the 2nd Int. Modelica Conference; 2002.

[18] R.W. Johnson. The Handbook of Fluid Dynamics. CRC Press; 1998.

[19] S.G. Kandlikar. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. Journal of heat transfer; 112:219 – 228; 1990. doi: 10.1115/1.2910348.

[20] Modelica Association. Modelica Standard Library 3.2; 2010.

[21] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere; Washington;D.C; 1980.

[22] B.S. Petukhov. Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties. Advances in Heat Transfer; 6(C):504–564; 1970.

[23] L.R. Petzold. A description of DASSL: a Diferential/Algebraic System Solver. Scientific Computing; pages 65–68; 1983.

[24] H. Schlichting and K. Gersten. Boundary-layer theory. Springer; 2000.

[25] M.M. Shah. Chart correlation for saturated boiling heat transfer: equations and further study. ASHRAE TransUnited States; 88(CONF-820112-):185–196; 1982.

[26] E. Zarza. The Direct Steam Generation with Parabolic Collectors. The DISS project (in Spanish). PhD thesis; Escuela Superior de Ingenieros Industriales de Sevilla; Seville; Spain; November 2000.

[27] W. Zhang and C. Zhang. A generalized moving-boundary model for transient simulation of dry-expansion evaporators under larger disturbances. International Journal of Refrigeration; 29(7):1119–1127; November 2006. doi: 10.1016/j.ijrefrig.2006.03.002.

[28] D. Zimmer. Equation-Based Modeling of Variable-Structure Systems. PhD thesis; Swiss Federal Institute of Technology (ETH); 2010.

Citeringar i Crossref