Konferensartikel

Presentation, Validation and Application of the DistrictHeating Modelica Library

Loic Giraud
Univ. Grenoble Alpes, INES, France / CEA, LITEN, 17, Grenoble, France

Roland Baviere
Univ. Grenoble Alpes, INES, France / CEA, LITEN, 17, Grenoble, France

Mathieu Vallée
Univ. Grenoble Alpes, INES, France / CEA, LITEN, 17, Grenoble, France

Cédric Paulus
Univ. Grenoble Alpes, INES, France / CEA, LITEN, 17, Grenoble, France

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1511879

Ingår i: Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015

Linköping Electronic Conference Proceedings 118:8, s. 79-88

Visa mer +

Publicerad: 2015-09-18

ISBN: 978-91-7685-955-1

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

District heating systems are a relevant solution for reducing CO2 emissions, especially in dense areas with older buildings. However, due to the heavy investment costs, there is a great interest in simulation and software solutions to reduce distribution losses, limit the overuse of peak generators and optimize the use of storage capacities. In this paper, we describe how we designed, validated and used a library of fast, precise and robust components for district heating systems. Among other results, we could reduce the complexity of some components by a factor of 40 and demonstrate more than 10% reduction in heat losses on a sample application.

Nyckelord

district heating; physical modeling; dynamic simulation; supply temperature optimization

Referenser

A. Benonysson, “Dynamic Modelling and Operational Optimization of District Heating Systems,” ISBN 87-88038-24-6. PhD Thesis - Technical University of Denmark, Lyngby, 1991

K. Ciuprinskas and B. Narbutis, Experiments on heat losses from district heating pipelines. Energetika vol. 2 pp. 35–40, 1999

M. Drouin, “Modélisation des écoulements turbulents anisothermes en milieu macroporeux par une approche de double filtrage,” PhD Thesis - Université de Toulouse, 2010 http://www.theses.fr/2010INPT0066

W. Du, H. Garcia and C. Paredis, “An Optimization Framework for Dynamic Hybrid Energy Systems”, Proc. of the 10-th International Modelica Conference, Lund, Sweden, March 2014. DOI: 10.3384/ECP14096767

R. Franke, F. Casella, M. Otter, K. Proelss, M. Sielemann, and M. Wetter “Standardization of thermo-fluid modeling in Modelica.Fluid” in Francesco Casella, editor, Proc. of the 7-th International Modelica Conference, Como, Italy, September 2009. DOI: 10.3384/ecp09430077

I. Gabrielaitiene, B. Bøhm, and B. Sunden, “Evaluation of Approaches for Modeling Temperature Wave Propagation in District Heating Pipelines,” Heat Transf. Eng., vol. 29, no. 1, pp. 45–56, 2008 DOI: 10.1080/01457630701677130

L. Giraud, R. Bavière and C. Paulus, “Modeling of Solar District Heating: A Comparison between TRNSYS and Modelica” Proc. of EuroSun 2014, Aixles-Bains, France, 2014. DOI: 10.18086/eurosun.2014.19.06

L. Giraud, R. Bavière, C. Paulus, M. Vallée and J.-F. Robin “Dynamic Modelling, Experimental Validation and Simulation of a Virtual District Heating Network” in Proc. of the 28th Int. Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS), Pau, France, 30th June – 3rd July 2015

J. Kensby, A. Trüschel, and J.-O. Dalenbäck, “Potential of Residential Buildings as Thermal Energy Storage in District Heating Systems – Results from a Pilot Test.” Applied Energy, vol. 137 (January), pp. 773–781, 2015 DOI: 10.1016/j.apenergy.2014.07.026.

B. P. Leonard, “A stable and accurate convective modelling procedure based on quadratic upstream interpolation” Comput. Methods Appl. Mech. Eng., vol. 19, pp. 59–98, 1979

S. V. Mattsson, “On Modeling of Heat Exchanger in Modelica”, Proc. of the 9th European Simulation Symposium, ESS’97, Passau, Germany, Oct 19-23, 1997

Modelica Association, Modelica Language Specification version 3.3 Revision 1, 2014

C. M. Park and A. Gomezplata, “Axial dispersion in a tubular flow vessel with bends,” Can. J. Chem. Eng., vol. 49, no. 2, pp. 202–206, 1971

S. V. Patankar, Numerical heat transfer and fluid flow. CRC press, Taylor and Francis group, 1980

Scilab Enterprises. Scilab: Free and Open Source software for numerical computation, 2015. Available from: http://www.scilab.org

R.K. Shah and D.P. Sekulic, “Fundamentals of heat exchanger design” John Wiley & Sons, Inc., Hoboken, New Jersey , 2003.

D. Tenchine and P. Gauthé, “Occurrence of thermal stratification in sodium cooled fast reactor piping,” Nucl. Eng. Des., vol. 274, pp. 1–9, Jul. 2014

S. Velut, P.-O. Larsson, J. Windahl, L. Saarinen, and K. Boman. “Short-Term Production Planning for District Heating Networks with JModelica.org.” Proc. of the 10-th International Modelica Conference, Lund, Sweden, March 2014. DOI: 10.3384/ECP14096959

M. Wetter, Wangda Zuo, Thierry S. Nouidui and Xiufeng Pang, Modelica Buildings library, Journal of Building Performance Simulation, 2014 Vol. 7, No. 4, 253–270, DOI: 10.1080/19401493.2013.765506.

E. B. Wylie and V.L. Streeter, “Fluid Transients”, McGraw-Hill Inc, New York, New York 1978

Citeringar i Crossref