Lidia Roca
CIEMAT-PSA, Almería, Spain
Luis J. Yebra
CIEMAT-PSA, Almería, Spain
Manuel Berenguel
Dep. Lenguajes y Computación, Universidad de Almería, Almería, Spain
Alberto de La Calle
CIEMAT-PSA, Almería, Spain
Ladda ner artikelhttp://dx.doi.org/10.3384/ecp12076883Ingår i: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany
Linköping Electronic Conference Proceedings 76:91, s. 883-888
Publicerad: 2012-11-19
ISBN: 978-91-7519-826-2
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
This paper describes a model which simulates the dynamics of a multi-effect distillation system in different operating conditions. It have been designed to improve the operation of the process and develop a control strategy which optimise the distillate production. The physical models are based on mass; energy and salt conservation equations and experimental correlations for heat transfer. Conservation laws are applied in the different components such as the heater; the effects and preheaters. The results of the mathematical model of the whole process show promising results.
[1] D. Alarcón-Padilla; L. García-Rodríguez; and J. Blanco-Gálvez. Assesment of an absorption heat pump coupled to a multi-effect distillation unit within aquasol project. Desalination; 212:303–310; 2007.
doi:
10.1016/j.desal.2006.10.015.
[2] M.T. Ali; H.E.S. Fath; and P.R. Armstrong. A comprehensive techno-economical review of indirect solar desalination. Renewable and Sustainable Energy Reviews; 15(8):4187–4199; 2011.
doi: 10.1016/j.rser.2011.05.012.
[3] N.H. Aly and A.K. El-Figi. Thermal performance of seawater desalination systems. Desalination; 158(1-3):127–142; 2003.
doi: 10.1016/S0011-9164(03)00443-0.
[4] N.H. Aly and MA Marwan. Dynamic response of multi-effect evaporators. Desalination; 114(2):189–196; 1997.
doi: 10.1016/S0011-9164(98)00011-3.
[5] H. El-Dessouky; I. Alatiqi; S. Bingulac; and H. Ettouney. Steady-state analysis of the multiple effect evaporation desalination process. Chemical engineering & technology; 21(5):437; 1998.
doi: 10.1002/(SICI)1521-4125(199805)21:5<437::AID-CEAT437>3.0.CO;2-D.
[6] A.M. El-Nashar. Predicting part load performance of small med evaporators-a simple simulation program and its experimental verification. Desalination; 130(3):217–234; 2000.
doi: 10.1016/S0011-9164(00)00088-6.
[7] M.A. Eltawil; Z. Zhengming; and L. Yuan. A review of renewable energy technologies integrated with desalination systems. Renewable and Sustainable Energy Reviews; 13(9):2245–2262; 2009.
doi: 10.1016/j.rser.2009.06.011.
[8] A. Husain. Integrated Power and Desalination Plants. EOLSS Publishers Ltd.; 2003.
[9] MH Khademi; MR Rahimpour; and A. Jahanmiri. Simulation and optimization of a six-effect evaporator in a desalination process. Chemical Engineering and Processing: Process Intensification; 48(1):339–347; 2009.
doi: .
[10] E. Mathioulakis; V. Belessiotis; and E. Delyannis. Desalination by using alternative energy: Review and state-of-the-art. Desalination; 203:346–365; 2006.
doi: 10.1016/j.desal.2006.03.531.
[11] B. Milow and E. Zarza. Advanced med solar desalination plants. configurations; costs; future–seven years of experience at the plataforma solar de almeria (spain). Desalination; 108(1-3):51–58; 1997.
doi: 10.1016/S0011-9164(97)00008-8.
[12] P. Palenzuela; D. Alarcon; J. Blanco; E. Guillen; M. Ibarra; and G. Zaragoza. Modeling of the heat transfer of a solar multi-effect distillation plant at the plataforma solar de almeria. Desalination and water treatment; 31(1-3):257–268; 2011.
[13] I.H. Yilmaz and M.S. Söylemez. Design and computer simulation on multi-effect evaporation seawater desalination system using hybrid renewable energy sources in turkey. Desalination; 2012.
doi: 10.1016/j.desal.2012.01.022.