Konferensartikel

Modeling a drum motor for illustrating wearout phenomena

Olaf Enge-Rosenblatt
Fraunhofer Institute for Integrated Circuits, Division Design Automation, Dresden, Germany

Christian Bayer
Fraunhofer Institute for Integrated Circuits, Division Design Automation, Dresden, Germany

Joachim Schnüttgen
Interroll Holding GmbH, Interroll Research Center, Wassenberg, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp12076889

Ingår i: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Linköping Electronic Conference Proceedings 76:92, s. 889-896

Visa mer +

Publicerad: 2012-11-19

ISBN: 978-91-7519-826-2

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

Applications of mathematical models of technical systems are widespread in today’s product development cycle. Mathematical models help to increase the understanding of physical properties of a product. The Usage of mathematical models in the design phase allows investigations of functional properties under changing operational conditions.

Often; mathematical models with different levels of detail are used. In this contribution; a model of a drum motor is presented. This model was designed for the description of dynamic behaviour of the drum motor as well as for the possible implementation of several wearing phenomena. Using this model; a better understanding of wear and tear phenomena has been achieved by carrying out a considerable number of simulation runs using different operational and wearing conditions. Using this information; important knowledge about detection of wearout signs was able to be gained.

Nyckelord

drum motor; mathematical model; wearout phenomena modelling; parameter determination

Referenser

[1] Ashtekar; A.; Sadeghi; F.; Stacke; L.-E.: Surface defects effects on bearing dynamics. Proceedings of the Institution of Mechanical Engineers; Part J: Journal of Engineering Tribology; Vol. 224; No. 1; pp. 25-35; 2010. doi: 10.1243/13506501JET578.

[2] Colbourne; J.R.: The geometric design of internal gear pairs; AGMA Technical Paper; 87 FTM 2; 1987

[3] Dymola 7.3; Dassault Systèmes

[4] Fritzson; P.: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1; IEEE Press; 2004. doi: 10.1109/9780470545669.

[5] Herold; T.; Franck; D.; Lange; E.; Hameyer; K.: Extension of a d-q model of a permanent magnet excited synchronous machine by including saturation; cross-coupling and slotting effects. IEEE International Electric Machines Drives Conference (IEMDC); Niagara Falls; Ontario; Canada; 15-18 May; 2011; Proc. pp. 1363-1367

[6] Hertz; H.: Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik; 92:156-171; 1881

[7] Hertz; H.: Über die Berührung fester elastischer Körper (On the contact of rigid elastic solids). In: Miscellaneous Papers. Jones and Schott; Editors; J. reine und angewandte Mathematik 92; Macmillan; London; pp. 156ff.; 1896

[8] MATLAB® 2010a; The MathWorks; Inc.

[9] www.modelica.org/libraries/Modelica/

[10] Paland; E.G.: Technisches Taschenbuch. INA Schaeffer KG; 2002

[11] Stacke; L.-E.; Fritzson; D.: Dynamic behaviour of rolling bearings: simulations and experiments. Proceedings of the Institution of Mechanical Engineers; Part J: Journal of Engineering Tribology; Vol. 215; No. 6; pp. 499-508; 2001. doi: 10.1243/1350650011543754.

[12] Tan; X.; Modafe; A.; Ghodssi; R.: Measurement and modeling of dynamic rolling friction in linear microball bearings. Journal of Dynamic Systems; Measurement and Control; Transactions of the ASME; 128 (4) ; pp. 891-898; 2006

[13] Zhuravlev; G.A.; Ageev; A.I.: Gear Teeth Bending Strength Analysis. Izvestia vyssih ucebnyh zavedenij. Masinostroenie (11); pp. 44-48; 1978

Citeringar i Crossref