Konferensartikel

Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger

Javier Bonilla
CIEMAT-PSA, Centro de Investigaciones Energåticas, Medioambientales y Tecnológicas - Plataforma Solar de Almería, Spain / CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain

Alberto de la Calle
CIEMAT-PSA, Centro de Investigaciones Energåticas, Medioambientales y Tecnológicas - Plataforma Solar de Almería, Spain / CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain

Margarita M. Rodríguez-García
CIEMAT-PSA, Centro de Investigaciones Energåticas, Medioambientales y Tecnológicas - Plataforma Solar de Almería, Spain

Lidia Roca
CIEMAT-PSA, Centro de Investigaciones Energåticas, Medioambientales y Tecnológicas - Plataforma Solar de Almería, Spain / CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain

Loreto Valenzuela
CIEMAT-PSA, Centro de Investigaciones Energåticas, Medioambientales y Tecnológicas - Plataforma Solar de Almería, Spain

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp15118873

Ingår i: Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015

Linköping Electronic Conference Proceedings 118:95, s. 873-882

Visa mer +

Publicerad: 2015-09-18

ISBN: 978-91-7685-955-1

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

Many commercial solar thermal power plants rely on thermal storage systems in order to provide a stable and reliable power supply. The heat exchanger control strategies, to charge and discharge the thermal storage system, strongly affect the performance of the power plant. With the aim of developing advanced control strategies, a dynamic model of a shell-and-tube heat exchanger is being developed. This heat exchanger belongs to the CIEMATPSA molten salt testing facility. The goal of this facility is to study thermal storage systems in solar thermal power plants. During experimental campaigns performance losses with respect to design performance were noticed in the heat exchanger. Therefore and in order to develop an accurate heat exchanger model, thermal losses as well as heat transfer correlations on both fluid sides have been calibrated against experimental data.

Nyckelord

calibration; heat exchanger; heat transfer correlation; thermal losses; JModelica.org

Referenser

J. Åkesson, K. E. Årzén, M. Gäfvert, T. Bergdahl, and H. Tummescheit. Modeling and optimization with Optimica and JModelica.org-Languages and tools for solving large-scale dynamic optimization problems. Computers and Chemical Engineering, 34(11):1737–1749, 2010. ISSN 00981354. doi: 10.1016/j.compchemeng.2009.11.011.

J. Bonilla, M.-M. Rodríguez-García, L. Roca, and L. Valenzuela. Object-Oriented Modeling of a Multi-Pass Shell-and-Tube Heat Exchanger and its Application to Performance Evaluation. In 1st Conference on Modelling, Identification and Control of Nonlinear Systems (MICNON), pages 107–112, Saint-Petersburg, Russia, 2015.

Y. A. Çengel. Heat Transfer: A Practical Approach (3rd edition). McGraw-Hill series in mechanical engineering. McGraw-Hill, 2006. ISBN 9780072458930.

A. Conn, K. Scheinberg, and L. Vicente. Introduction to Derivative-Free Optimization. Society for Industrial and Applied Mathematics, 2009.
doi: 10.1137/1.9780898718768.

D. J. Correa and J. L. Marchetti. Dynamic Simulation of Shelland-Tube Heat Exchangers. Heat Transfer Engineering, 8 (1):50 – 59, 1987. doi: 10.1080/01457638708962787.

F. W. Dittus and L. M. K. Boelter. Heat transfer in automobile radiators of the tubular type. University of California Publications in Engineering, 2(1):443–461, 1930. ISSN 07351933. doi: 10.1016/0735-1933(85)90003-X.

R. Ferri, A. Cammi, and D. Mazzei. Molten salt mixture properties in RELAP5 code for thermodynamic solar applications. International Journal of Thermal Sciences, 47(12):1676–1687, December 2008. ISSN 12900729. doi: 10.1016/j.ijthermalsci.2008.01.007.

G. K. Filonenko. Hydraulic drag in pipes. Teploenergetika, 1 (4):40 – 44, 1954.

V. Gnielinski. New equations for heat and mass transfer in turbulent pipe flow and channel flow. International Chemical Engineering, 2(16):359–368, 1976.

J. C. Gomez, G. C. Glatzmaier, and M. Mehos. Heat Capacity Uncertainty Calculation for the Eutectic Mixture of Biphenyl / Diphenyl Ether Used As Heat Transfer Fluid. SolarPaces Conference, (September), 2012.

H. Hausen. Darstellung des Wärmeüberganges in Rohren durch verallgemeinerte Potenzbeziehyngen. VDI - Verfahrenstechnik, 4:91–98, 1943.

U. Herrmann and D. W. Kearney. Survey of Thermal Energy Storage for Parabolic Trough Power Plants. Journal of Solar Energy Engineering, 124(2):145, 2002. ISSN 01996231. doi: 10.1115/1.1467601.

U. Herrmann, B. Kelly, and H. Price. Two-tank molten salt storage for parabolic trough solar power plants. Energy, 29(5-6):883–893, April 2004. ISSN 03605442. doi: 10.1016/S0360-5442(03)00193-2.

International Organization of Standardization. ISO/IEC Guide 98-3:2008 Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). Technical report, Switzerland, 2008.

G. J. Janz, U. Krebs, H. F. Siegenthaler, and R. P. T. Tomkins. Molten Salts: Volume 3 Nitrates, Nitrites, and Mixtures: Electrical Conductance, Density, Viscosity, and Surface Tension Data, 1972. ISSN 00472689.

A. D. Kraus, A. Aziz, and J. Welty. Extended Surface Heat Transfer. Wiley, 2002. ISBN 9780471436638.

R. Mukherjee. Does Your Application Call for an F-Shell Heat Exchanger? CEP magazine, (April):40–45, 2004.

B. S. Petukhov. Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties. Advances in Heat Transfer, 6(C):504–564, 1970. ISSN 00652717. doi: 10.1016/S0065-2717(08)70153-9.

L. Prandtl. Eine Beziehung zwischen Warmeaustausch und Stromungswiderstand der Flussigkeiten. Physik Z, 11:1072–1075, 1910.

M.-M. Rodríguez-García. First Experimental Results of a PTC Facility Using Gas as the Heat Transfer Fluid. In 15th SolarPACES Conference, Berlin, Germany, 2009.

M.-M. Rodríguez-García and E. Zarza. Design and Construction of an Experimental Molten Salt Test Loop. In 17thSolarPACES Conference, Granada, Spain, 2011.

M.-M. Rodríguez-García, M. Herrador-Moreno, and E. Zarza Moya. Lessons learnt during the design, construction and start-up phase of a molten salt testing facility. Applied Thermal Engineering, 62(2):520–528, January 2014. ISSN 13594311. doi: 10.1016/j.applthermaleng.2013.09.040.

R. W. Serth. Process Heat Transfer: Principles and Applications. Elsevier Science, 2007. ISBN 9780123735881.

Solutia. Therminol VP-1 heat transfer fluid - Vapour and Liquid phases. Technical bulletin 7239115C, 2008.

D. Taler. Experimental determination of correlations for average heat transfer coefficients in heat exchangers on both fluid sides. Heat and Mass Transfer/Waerme- und Stoffuebertragung, 49(8):1125–1139, 2013. ISSN 14321181. doi: 10.1007/s00231-013-1148-5.

K. Thulukkanam. Shell and Tube Heat Exchanger Design. In Heat Exchanger Design Handbook, Second Edition, Dekker Mechanical Engineering, pages 237–336. CRC Press, 2013. ISBN 978-1-4398-4212-6. doi: 10.1201/b14877-6.

VDI. VDI Heat Atlas. Springer, 2nd edition, 2010. ISBN 9783540778769.

K. Wichterle. A theoretical viscosity correction factor for heat transfer and friction in pipe flow. Chemical Engineering Science, 45(5):1343 – 1347, 1990. ISSN 00092509. doi: 10.1016/0009-2509(91)85083-A.

F. Zaversky, M. M. Rodríguez-García, J. García-Barberena, M. Sánchez, and D. Astrain. Transient behavior of an active indirect two-tank thermal energy storage system during changes in operating mode - An application of an experimentally validated numerical model. Energy Procedia, 49:1078–1087, 2013. ISSN 18766102. doi: 10.1016/j.egypro.2014.03.117.

F. Zaversky, M. Sánchez, and D. Astrain. Object-oriented modeling for the transient response simulation of multipass shell-and-tube heat exchangers as applied in active indirect thermal energy storage systems for concentrated solar power. Energy, 65:647–664, February 2014. ISSN 03605442. doi: 10.1016/j.energy.2013.11.070.

A. B. Zavoico. Solar Power Tower - Design Basis Document. Technical Report SAND2001-2100, Sandia National Laboratories, Albuquerque, USA, 2001.

Citeringar i Crossref