The Deployable Structures Library

Cory Rupp
ATA Engineering, Inc., USA

Laura Schweizer
ATA Engineering, Inc., USA

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp18154187

Ingår i: Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA

Linköping Electronic Conference Proceedings 154:20, s. 187-195

Visa mer +

Publicerad: 2019-02-26

ISBN: 978-91-7685-148-7

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Deployable structures are an enabling technology for many space- and ground-based structures and vehicles. Analysis of deployment mechanisms and structural dynamic responses in early design phases is key to ensuring deployment reliability and overall structural integrity. In this paper, a Modelica library is presented that provides a number of building blocks to enable and ease the development of models of deployable structures. Several examples using the library are presented that would be difficult or impossible to model using other technologies.


Modelica, deployable structures, flexible structures, spacecraft, solar array


C. Fellipa. 2017. Introduction to Finite Element Methods course material, Chapter 15: Three-Node Plane Stress Triangles. https://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch15.d/IFEM.Ch15.pdf

G. Ferretti, A. Leva, and B. Scaglioni. Object-oriented modelling of general flexible multibody systems. Mathematical and Computer Modeling of Dynamical Systems, 20(1): 1-22, 2014. doi: 10.1080/13873954.2013.807433.

A. Heckmann, M. Otter, S. Dietz, and J.D. López. The DLR FlexibleBodies library to model large motions of beams and of flexible bodies exported from finite element programs. In Proceedings of 5th Modelica Conference. Vienna, Austria, September 2006.

B. Hoang, W. White, B. Spence, S. Kiefer. Commercialization of Deployable Space Systems’ roll-out solar array (ROSA) technology for Space Systems Loral (SSL) solar arrays. In Proceedings of 2016 IEEE Aerospace Conference. Big Sky, MT, 2016. doi: 10.1109/AERO.2016.7500723.

N. F. Knight Jr., K. B. Elliott, J. D. Templeton, K. Song, J. T. Rayburn. FAST Mast Structural Response to Axial Loading: Modeling and Verification. In Proceedings of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, HI, April 2012. doi: 10.2514/6.2012-1952.

G.A. Landis. 1999. Advanced Solar- and Laser-pushed Lightsail Concepts. Final Report, NASA Institute for Advanced Concepts. http://www.niac.usra.edu/files/studies/final_report/4Landis.pdf

M. Mikulas, R. Pappa, J. Warren, and G. Rose. Telescoping Solar Array Concept for Achieving High Packaging. In Proceedings of the 2nd AIAA Spacecraft Structures Conference. Kissimmee, FL, January 2015.

R. Pappa, G. Rose, T. Mann, J. Warren, M. Mikulas, T. Kerslake, T. Kraft, J. Banik. Solar Array Structures for 300 kW-Class Spacecraft. Space Power Workshop, 2013. (https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140000360.pdf)

C. J. Rupp. 2018. The Relative Finite Element Method. In Prep. C. J. Rupp, L. Schweizer, and D. Murphy. Rapid Parametric Analysis and Design of Space-Based Solar Arrays. In Proceedings of the 3rd AIAA Spacecraft Structures Conference. San Diego, CA, January 2016.

F. Schiavo, L. Viganò, and G. Ferretti. Object-oriented modelling of flexible beams. Multibody System Dynamics, 15(3): 263–286, 2006. doi: 10.1007/s11044-006-9012-8. J. Wright. 2007. https://www.nasa.gov/content/astronautscott-parazynski-works-near-solar-array

S. Yang, Z. Deng, J. Sun, Y. Zhao, and S. Jiang. 2017. A Variable-Length Beam Element Incorporating the Effect of Spinning. Latin American Journal of Solids and Structures, 14(8): 1506-1528. doi:10.1590/1679-78253894

S. A. Zirbel, R. J. Lang, R. W. Thomson, D. A. Sigel, P. E. Walkemeyer, B. P. Trease, S. P. Magleby, L. L. Howell. Accomodating Thickness in Origami-Based Deployable Arrays. Journal of Mechanical Design, 135, 2013. doi: 10.1115/1.4025372.

Citeringar i Crossref