Interactive visualization of new electromagnetic quantities

Siavoush M. Mohammadi
Swedish Institute of Space Physics, Uppsala, Sweden

Anders Hast
UPPMAX, Uppsala University, Sweden

Lars K. S. Daldorff
Department of Physics and Astronomy, Uppsala University, Sweden

Martin Ericsson
UPPMAX, Uppsala University, Sweden

Jan E. S. Bergman
Swedish Institute of Space Physics, Uppsala, Sweden

Bo Thidé
Swedish Institute of Space Physics, Uppsala, Sweden

Ladda ner artikel

Ingår i: SIGRAD 2008. The Annual SIGRAD Conference Special Theme: Interaction; November 27-28; 2008 Stockholm; Sweden

Linköping Electronic Conference Proceedings 34:16, s. 71-74

Visa mer +

Publicerad: 2008-11-27


ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Recent development in classical electrodynamics has demonstrated the usefulness of different rotational and topological modes in the electromagnetic fields (angular momentum; polarization; vorticity etc.). Unfortunately; the visualization tools available to illustrate these electrodynamic quantities have hitherto been inadequate. Therefore we have developed a VTK and Python based interactive visualization tool; with working name EMVT (ElectroMagnetic Visualization Tool); targeted at visualizing precisely these modes. In the near future; EMVT will be further developed to visualize and control live antenna systems; where electromagnetic field data is instantly received; calculated; and visualized from an antenna or a system of antennas. It will then be possible to see how the antenna properties change through direct user interaction in real time.


Inga nyckelord är tillgängliga


ABRAHAM; V. M. 1914. Der Drehimpuls des Lichtes. Physik. Zeitschr. XV; 914–918.

ALLEN; L.; BARNETT; S. M.; AND PADGETT; M. J. 2003. Optical Angular Momentum. IOP; Bristol; UK.

BERGMAN; J. E. S.; MOHAMMADI; S. M.; DALDORFF; L. K. S.; THID´E; B.; CAROZZI; T. D.; KARLSSON; R. L.; AND ERIKSSON; M. 2008. Conservation laws in generalized riemannsilberstein electrodynamics. ArXiv 0803.2383; v6.

HARWIT; M. 2003. Photon orbital angular momentum in astrophysics. Astrophys. J. 597; 2 (10 November); 1266–1270.

JACKSON; J. D. 1998. Classical Electrodynamics; 3 ed. Wiley; New York; ch. 7.

KITWARE. Visualization ToolKit (VTK). Web site. http://www.vtk.org/.

KITWARE; 2006. The Visualization Toolkit User’s Guide. LINDBLAD; E. 2006. Programmering i Python. Studentlitteratur; Lund.

LOFAR. Low Frequency Array. Web site. http://www.lofar.org. NEC2. Numerical Electromagnetic Code; Version 2. Web site. http://www.nec2.org.

NOETHER; E. 1918. Invariante Variationsprobleme. Nachr. Ges. Wiss. G¨ottingen 1; 3; 235–257. English transl.: Invariant variation problems; Transp. Theor. Stat. Phys.; 1; 186–207 (1971).

POYNTING; J. H. 1909. The wave motion of a revolving shaft; and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. Roy. Soc. London A 82; 557 (31 July); 560–567.

PYTHON. Python Programming Language. Web site. http://www.python.org.

SCHROEDER; W.; MARTIN; K.; AND LORENSEN; B. 2003. The Visualization Toolkit An Object-Oriented Approach To 3D Graphics; 4 ed. Kitware; Inc. publishers. SQUILLACOTE; A.; 2008. The ParaView Guide.

THID´E; B.; THEN; H.; SJ¨O HOLM; J.; PALMER; K.; BERGMAN; J. E. S.; CAROZZI; T. D.; ISTOMIN; Y. N.; IBRAGIMOV; N. H.; AND KHAMITOVA; R. 2007. Utlilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99; 8 (22 August); 087701.

VOORS; A. NEC based antenna modeler and optimizer. Web site. http://home.ict.nl/ arivoors/.

Citeringar i Crossref