Improving the Performance of Solar Panels by the Use of Phase-Change Materials

Pascal Biwole
University of Nice Sophia-Antipolis, Nice, France

Pierre Eclache
University of Lyon, Villeurbanne, France

Frederic Kuznik
University of Lyon, Villeurbanne, France

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110572953

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:35, s. 2953-2960

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


High operating temperatures induce a loss of efficiency in solar photovoltaic and thermal panels. This paper investigates the use of phase-change materials (PCM) to maintain the temperature of the panels close to the ambient. The main focus of the study is the CFD modeling of heat and mass transfers in a system composed of an impure phase change material situated in the back of a solar panel (SP). A variation of the enthalpy method allows simulating the material thermo-physical change of properties. The buoyancy term in Navier-Stokes’ momentum conservation equation is modified through an additional term which forces the velocity field to be non-existent when the PCM is solid. For validation purposes; isotherms and velocity fields are calculated and compared to those from an experimental set-up. Results show that adding a PCM on the back of a solar panel can maintain the panel’s operating temperature under 40°C for around two hours under a constant solar radiation of 1000W/m².


Solar Panel; Operating Temperature; Phase Change Material


[1] K. Emery; J. Burdick; Y. Caiyem; D. Dunlavy; H. Field; B. Kroposki; T. Moriatry; Temperature dependence of photovoltaic cells; modules and systems; Proceedings of the 25th IEEE PV Specialists Conference; Washington DC; USA; May 13–19; 1996; pp. 1275–1278.

[2] M.J. Huang; P.C. Eames; B. Norton; Thermal regulation of building integrated photovoltaics using phase change materials; International Journal of Heat and Mass Transfers 47; 2004; pp. 275-2733. doi: 10.1016/j.ijheatmasstransfer.2003.11.015.

[3] M.J. Huang; P.C. Eames; B. Norton; Phase change materials for limiting temperature rise in building integrated photovoltaics; Solar Energy 80 (9); 2006; pp. 1121-1130. doi: 10.1016/j.solener.2005.10.006.

[4] M.J. Huang; P.C. Eames; B. Norton; Comparison of a small-scale 3D PCM thermal control model with a validated 2D PCM thermal control model; Solar Energy Materials and Solar Cells 90 (13); 2006; pp. 1961-1972. doi: 10.1016/j.solmat.2006.02.001.

[5] M. Cellura; G. Ciulla; V. Lo Brano; A. Marvuglia; A. Orioli; Photovoltaic panel coupled with a phase changing material heat storage system in hot climates. In: Proceedings of the 25th Conference on Passive and Low Energy Architecture; Dublin; Ireland; October 22-24; 2008.

[6] A. Jay; S. Clerc; B. Boillot; A. Bontemps; F. Jay; Utilisation de matériaux à changement de phase pour réduire la température de panneaux PV intégrés au bâti; Proceedings of the International Building Performance Simulation Association conference; Moret sur Loing; France; November 9-10; 2010.

[7] D. N. Arnold; F. Brezzi; M. Fortin; A stable element for the Stokes equations; Calcolo (21); 1984; pp. 337-344.

Citeringar i Crossref