Air Bottoming Cycle for Hybrid Solar-Gas Power Plants

Fouad Khaldi
Department of Physics, University of Batna, Batna, Algeria

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110573813

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:19, s. 3813-3820

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Several solar-gas hybrid power plants based on the parabolic trough system are under construction in the MENA region and in Spain. The thermodynamic cycle of these plants is divided into topping cycle and bottoming cycle according to their temperature range. Since the solar collectors supply heat at a medium temperature level; up to 400°C; the existing technology uses a steam bottoming cycle (steam turbine). The present study aimed at investigating the thermodynamic feasibility of using air bottoming cycle (gas turbine) instead of the steam bottoming cycle. A thermodynamic scheme of solar air bottoming cycle was proposed. The case study considered an existing small size capacity gas turbine (<50 MW) as a topping cycle. The thermodynamic performance of the proposed solar air bottoming cycle was compared to two reference cases; without solar energy; a steam bottoming cycle and a conventional air bottoming cycle.


Solar-gas hybrid power plant; Air bottoming cycle; Thermodynamic analysis


[1] V. Quaschning; Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation; Solar Energy 44; 2004; pp. 171-178. doi: 10.1016/j.solener.2004.04.011.

[2] Commission de Regulation de l’Electricité et du Gaz (Electricity and gas authority of Algeria); www.creg.org.dz; Annual Report 2010 (in French).

[3] Concentrated Solar Thermal Power-Now; European Commission; European Communities; 2005.

[4] A. Poullikkas; Analysis of power generation from parabolic trough solar thermal plants for the Mediterranean Region- A case study for the Island of Cyprus; Renewable and Sustainable Energy Reviews 13; 2009; pp. 2474-2484. doi: 10.1016/j.rser.2009.03.014.

[5] M. A. H. El-Sayed; Solar supported steam production for power generation in Egypt; Energy Policy 33; 2005; pp. 1251-1259. doi: 10.1016/j.enpol.2003.11.021.

[6] R. Hosseini; M. Soltani; G. Valizadeh; Technical and economic assessment of the integrated solar combined cycle power plants in Iran; Renewable Energy 30; 2005; pp. 1551-1555. doi: 10.1016/j.renene.2004.11.005.

[7] A. Baghernejad; M. Yaghoubi; Exergy analysis of an integrated solar combined cycle system; Renewable Energy 35; 2010; pp. 2157-2164. doi: 10.1016/j.renene.2010.02.021.

[8] M. S. Al-Soud; E. S. Hrayshat; A 50 MW concentrating solar power plant for Jordan; Journal of Cleaner Production 14; 2009; pp. 625-635. doi: 10.1016/j.jclepro.2008.11.002.

[9] Concentrating Solar Power-From research to implementation; European Commission; European Communities; 2007.

[10] Energy Technology Perspectives-Scenarios&Strategies to 2050; www.iea.org; 2008.

[11] A. Fernández-García; E. Zarza; L. Valenzuela; M. Pérez; Parabolic-trough solar collectors and their applications; Renewable and Sustainable Energy Reviews 14; 2010; pp. 1695–1721. doi: 10.1016/j.rser.2010.03.012.

[12] Y. S. H. Najjar; M. S. Zaamout; Performance analysis of gas turbine air-bottoming combined system; Energy Convers. Mgmt. 37(4); 1996; pp. 399-403. doi: 10.1016/0196-8904(95)00197-2.

[13] M. Korobitsyn; Industrial application of the air bottoming cycle; Energy Conversion and Management 43; 2002; pp. 1311-1322. doi: 10.1016/S0196-8904(02)00017-1.

[14] Y. S. H. Najjar; Comparison of performance for cogeneration systems using single-for twin-shaft gas turbine engines; Applied Thermal Engineering 17(2); 1997; pp. 113-124. doi: 10.1016/S1359-4311(96)00028-2.

[15] Y. S. H. Najjar; Gas turbine cogeneration systems: a review of some novel cycles; Applied Thermal Engineering 20; 2000; pp. 179-197. doi: 10.1016/S1359-4311(99)00019-8.

[16] P. A. Pilavachi; Power generation with gas turbine systems and combined heat and power; Applied Thermal Engineering 20 (15-16); 2000; pp. 1421-1429. doi: 10.1016/S1359-4311(00)00016-8.

[17] Y. S. H. Najjar; Efficient use of energy by utilizing gas turbine combined systems; Applied Thermal Engineering 21; 2001; pp. 407-438. doi: 10.1016/S1359-4311(00)00033-8.

[18] L. Chen; Y. Li; F. Sun; C. Wu; Power optimization of open-cycle regenerator gas-turbine power-plants; Applied Energy 78; 2004; pp. 199-218. doi: 10.1016/j.apenergy.2003.08.005.

[19] A. Poullikkas; An overview of current and future sustainable gas turbine technologies; Renewable and Sustainable Energy Reviews 9; 2005; pp. 409-443. doi: 10.1016/j.rser.2004.05.009.

[20] C. Ruixian; J. Lixia; Analysis of the recuperation gas turbine cycle with a recuperator located between turbines; Applied Thermal Engineering 26; 2006; pp. 89-96. doi: 10.1016/j.applthermaleng.2005.04.016.

[21] A. L. Polyzakis; C. Koroneos; G. Xydis; Optimum gas turbine cycle for combined power plant; Energy Conversion and Management 49; 2008; pp. 551-563. doi: 10.1016/j.enconman.2007.08.002.

[22] A. Franco; C. Casarosa; On some perspectives for increasing the efficiency of combined cycle power plants; Applied Thermal Engineering 22; 2002; pp. 1501-1518. doi: 10.1016/S1359-4311(02)00053-4.

[23] C. Carcasci; B. Facchini; Comparison between two gas turbine solutions to increase combined power plant efficiency; Energy Conversion & Management 41; 2000; pp. 757-773. doi: 10.1016/S0196-8904(99)00150-8.

[24] Cycle-Tempo Release 5.0; 2007; Delft University of Technology; The Netherlands.

[25] G. Elsaket; Simulating the integrated solar combined cycle for cower plants application in Libya; MSc Thesis; 2007; Cranfield University; UK.

[26] M. J. Montes; A. Abánades; J. M. Martínez-Val; M. Valdés; Solar multiple optimization for a solar-only thermal power plant; using oil as heat transfer in the parabolic trough collectors; Solar Energy 83; 2009; pp. 2165-2176. doi: 10.1016/j.solener.2009.08.010.

[27] E. Hu; Y. Yang; A. Nishimura; F. Yilmaz; A. Kouzani; Solar thermal aided power generation; Applied Energy 87 (9); 2009; pp. 2881-2885. doi: 10.1016/j.apenergy.2009.10.025.

[28] M. V. J. J. Suresh; K. S. Reddy; A. K. Kolar; 4-E (Energy; Exergy; Environment; and Economic) analysis of solar thermal aided coal-fired power plants; Energy for Sustainable Development; 14 (4) 2010; pp. 267-279. doi: 10.1016/j.esd.2010.09.002.

Citeringar i Crossref