Chemical Process Modeling in Modelica

Ali Baharev
Fakultät für Mathematik, UniversitätWien, Wien, Austria

Arnold Neumaier
Fakultät für Mathematik, UniversitätWien, Wien, Austria

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp12076955

Ingår i: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Linköping Electronic Conference Proceedings 76:100, s. 955-962

Visa mer +

Publicerad: 2012-11-19

ISBN: 978-91-7519-826-2

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Chemical process models are highly structured. Information on how the hierarchical components are connected helps to solve the model efficiently. The structural information retrieved from the JModelica environment will play an important role in the development of our novel optimization methods. Foundations of a Modelica library for general-purpose chemical process modeling have been built. Multiple steady-states in ideal two-product distillation were computed as a proof of concept. The Modelica source code is available at the project homepage. The issues encountered during modeling may be valuable to the Modelica language designers.


separation; distillation column; tearing methods; homotopy continuation; bifurcation


[1] Johan Åkesson; Tove Bergdahl; Magnus Gäfvert; and Hubertus Tummescheit. Modeling and Optimization with Modelica and Optimica Using the JModelica.org Open Source Platform. In Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009; pp. 29–38. Linköping University Electronic Press; Linköpings universitet; 2009.

[2] Johan Åkesson; Torbjörn Ekman; and Görel Hedin. Implementation of a Modelica compiler using JastAdd attribute grammars. Science of Computer Programming; 75:21–38; 2010. doi: 10.1016/j.scico.2009.07.003.

[3] Johan Åkesson. Languages and Tools for Optimization of Large-Scale Systems. PhD thesis; Regler; nov 2007.

[4] Ali Baharev; Lubomir Kolev; and Endre Rév. Computing multiple steady states in homogeneous azeotropic and ideal two-product distillation. AIChE Journal; 57:1485–1495; 2011. doi: 10.1002/aic.12362.

[5] Ali Baharev and Arnold Neumaier. Steady-state multiplicities in reactive distillation: stage-bystage calculation revisited. AIChE J.; 2012.

[6] Lorenz T. Biegler. Nonlinear programming: concepts; algorithms; and applications to chemical processes. SIAM; 2010. doi: 10.1137/1.9780898719383.

[7] Chen Chang; Ding Jianwan; Chen Liping; and Wu Yizhong. Media Modeling for Distillation Process with Modelica/Mworks. In Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany; pp. 239–245. Linköping University Electronic Press; Linköpings universitet; 2011.

[8] Amy R. Ciric and Peizhi Miao. Steady state multiplicities in an ethylene glycol reactive distillation column. Ind. Eng. Chem. Res.; 33:2738–2748; 1994. doi: 10.1021/ie00035a025.

[9] R. de P. Soares and A. R. Secchi. EMSO: A new environment for modelling; simulation and optimisation. In Computer Aided Chemical Engineering; vol. 14; pp. 947–952. Elsevier; 2003.

[10] M. F. Doherty; Z. T. Fidkowski; M. F. Malone; and R. Taylor. Perry’s Chemical Engineers’ Handbook. McGraw-Hill Professional; 8th ed.; 2007.

[11] N. Duro and F. Morilla. A Modelling Methodology for Distillation Columns using Dymola and Simulink. In Applied Simulation and Modelling. ACTA Press; 2003.

[12] Robert Fourer; David M. Gay; and Brian Wilson Kernighan. AMPL: A Modeling Language for Mathematical Programming. Brooks/Cole USA; 2003.

[13] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-IEEE Press; 2004. doi: 10.1109/9780470545669.

[14] E.W. Jacobsen and S. Skogestad. Multiple steady states in ideal two-product distillation. AIChE Journal; 37:499–511; 1991. doi: 10.1002/aic.690370404.

[15] Andreas Joos; Karin Dietl; and Gerhard Schmitz. Thermal separation: An approach for a modelica library for absorption; adsorption and rectification. In Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009; pp. 804–813. Linköping University Electronic Press; Linköpings universitet; 2009.

[16] W. K. Lewis and G. L. Matheson. Studies in distillation. Industrial and Engineering Chemistry; 24:494–498; 1932. doi: 10.1021/ie50269a005.

[17] Arnold Neumaier. Structure-driven methods for large-scale optimization; 2012. URL http://www.mat.univie.ac.at/~neum/structure.html.

[18] John M. Prausnitz; Rüdiger N. Lichtenthaler; and Edmundo Gomes de Azevedo. Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice Hall PTR; Upper Saddle River; NJ; third ed.; 1999.

[19] Carl Sandrock and Philip L. de Vaal. Dynamic simulation of chemical engineering systems using OpenModelica and CAPE-OPEN. In 19th European Symposium on Computer Aided Process Engineering; vol. 26 of Computer Aided Chemical Engineering; pp. 859–864. Elsevier; 2009. doi: 10.1016/S1570-7946(09)70143-9.

[20] Chang K. Yi and William L. Luyben. Design and control of coupled reactor/column systems–Part 1. A binary coupled reactor/rectifier system. Computers & Chemical Engineering; 21(1):25–46; 1996. doi: 10.1016/0098-1354(95)00253-7.

Citeringar i Crossref