HelmholtzMedia — A Fluid Properties Library

Matthis Thorade
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany

Ali Saadat
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1207663

Ingår i: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Linköping Electronic Conference Proceedings 76:6, s. 63-70

Visa mer +

Publicerad: 2012-11-19

ISBN: 978-91-7519-826-2

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


HelmholtzMedia is a library for the calculation of fluid properties. It is implemented in Modelica and published under the Modelica license. All thermodynamic state properties and their partial derivatives are calculated from a Helmholtz energy equation of state. Further properties that can be calculated include surface tension; viscosity and thermal conductivity.


fluid properties; equation of state; Helmholtz energy; partial derivatives; surface tension; viscosity; thermal conductivity


[1] R. Akasaka. “A Reliable and Useful Method to Determine the Saturation State from Helmholtz Energy Equations of State”. In: Journal of Thermal Science and Technology 3.3 (2008); pp. 442–451. doi: 10.1299/jtst.3.442.

[2] H. D. Baehr. “Thermodynamische Fundamentalgleichungen und charakteristische Funktionen”. In: Forschung im Ingenieurwesen 64.1 (1998); pp. 35–43. doi: 10.1007/PL00010764.

[3] R. Brent. Algorithms for minimization without derivatives. Prentice-Hall; 1973.

[4] H. Elmqvist; H. Tummescheit; and M. Otter. “Object-oriented modeling of thermo-fluid systems”. In: Proceedings of the 3rd International Modelica Conference. 2003; pp. 269–286.

[5] E. W. Lemmon; M. L. Huber; and M. O. McLinden. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties - REFPROP. 9.0. National Institute of Standards and Technology; Standard Reference Data Program. Gaithersburg; 2010.

[6] G. R. Somayajulu. “A generalized equation for surface tension from the triple point to the critical point”. In: International Journal of Thermophysics 9.4 (1988); pp. 559–566. doi: 10.1007/BF00503154.

[7] R. Span. Multiparameter equations of state: an accurate source of thermodynamic property data. Springer Verlag; 2000. doi: 10.1007/978-3-662-04092-8.

[8] R. Span; W. Wagner; E. W. Lemmon; and R. T. Jacobsen. “Multiparameter equations of state — recent trends and future challenges”. In: Fluid Phase Equilibria 183-184.1-2 (2001); pp. 1–20. doi: 10.1016/S0378-3812(01)00416-2.

[9] M. Thorade. HelmholtzMedia. 2012. URL: https : / / github . com / thorade / HelmholtzMedia/.

[10] M. Thorade and A. Saadat. “Partial derivatives of thermodynamic state properties for dynamic simulation”. In: will be submitted to: Environmental Earth Sciences (2012).

[11] H. Tummescheit. Ticket 85: Re-design and simplification of Modelica.Media. 2008. URL: https://trac.modelica.org/Modelica/ticket/85.

[12] W. Wagner. Eine mathematisch statistische Methode zum Aufstellen thermodynamischer Gleichungen — gezeigt am Beispiel der Dampfdruckkurve reiner fluider Stoffe. Vol. 3. Fortschrittberichte der VDI Zeitschriften 39. VDI Verlag; 1974.

[13] W. Wagner and A. Pruß. “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use”. In: Journal of Physical and Chemical Reference Data 31.2 (2002); pp. 387–535. doi: 10.1063/1.1461829.

Citeringar i Crossref