Backward simulation - A tool for designing more efficient mechatronic systems

Matthias Liermann
American University of Beirut, Department of Mechanical Engineering, Lebanon

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp12076867

Ingår i: Proceedings of the 9th International MODELICA Conference; September 3-5; 2012; Munich; Germany

Linköping Electronic Conference Proceedings 76:89, s. 867-876

Visa mer +

Publicerad: 2012-11-19

ISBN: 978-91-7519-826-2

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


This paper proposes the use of backward simulation with Modelica as a tool to improve system design. The aim is to introduce system simulation into early design stages of mechatronic systems and to use the same software tools and model libraries that are also used in later stages for dynamic analysis and control design. It seems that the necessity of a control design is one of the main obstacles against the use of conventional dynamic system simulation in early design stages.

The main benefit of backward simulation is that it does not require an implementation of feedback control. The backward simulation approach is explained using the example of a servo-hydraulic drive. The paper shows that it can help to significantly reduce the energy consumption of this system. It is possible to simulate typical duty cycles of the drive without the need to redesign the control for each change.


backward simulation; forward simulation; model inverse; hydraulics; mechatronics; servo-drive; efficiency optimization; servo drives; design process


[1] Michael Ambros. Engineeringtool sizer. In Antriebstag 2011; Siemens Kundenveranstaltung; 2011.

[2] Johann Bals; Gerhard Hofer; Andreas Pfeiffer; and Christian Schallert. Object-oriented inverse modelling of multi-domain aircraft equipment systems with modelica. In Peter Fritzson; editor; Proceedings of the 3 International Modelica Conference; Linkping; November 3-4; 2003; pages 377–384; 2003.

[3] Francesco Casella; Martin Otter; Katrin Proelss; Christoph Richter; and Hubertus Tummescheit. The modelica fluid and media library for modeling of incompressible and compressible thermofluid pipe networks. In Proceedings of the 5 International Modelica Conference; September 4t-5th; 2006; volume 2; pages 631–640; 2006.

[4] W. Hoffmann. Dynamisches Verhalten hydraulischer Systeme; automatischer Modellaufbau und digitale Simulation (Diss.). PhD thesis; RWTH Aachen University; 1981.

[5] Chueng-Chiu Huang and Hsi-Kuang Wang. Backward simulation with multiple objectives control. In Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 (IMECS); volume 2; 2009.

[6] Amor V.M. Ines and Peter Droogers. Inverse modelling in estimating soil hydraulic functions: a genetic algorithm approach. Hydrology and Earth System Sciences; 6(1):49–65; 2002. doi: 10.5194/hess-6-49-2002.

[7] Mohieddine Jelali. Hydraulic Servo Systems: Modelling; idendification and control. Springer; 2003. doi: 10.1007/978-1-4471-0099-7.

[8] Matthias Liermann and Hubertus Murrenhoff. Knowledge based tools for the design of servohydraulic closed loop control. In International Symposium on Power Transmission and Motion Control (PTMC); pages 17–28; Bath; England; 2005.

[9] T. Markel; A. Brooker; T. Hendricks; V. Johnson; K. Kelly; B. Kramer; M. O’Keefe; S. Sprik; and K. Wipke. Advisor: a systems analysis tool for advanced vehicle modeling. Journal of Power Sources; 110(2):255 – 266; 2002. doi: 10.1016/S0378-7753(02)00189-1.

[10] Herbert E. Merrit. Hydraulic control systems. John Whiley & Sons; Inc.; 1967.

[11] Hubertus Murrenhoff. Servohydraulik - geregelte hydraulische Antriebe [Servo-hydraulics - closed loop controlled hydraulic drives]. Shaker; Aachen; 2008.

[12] Martin Otter. Modeling; simulation and control with Modelica 3.0 and Dymola 7.0 (Preliminary Draft; Jan 21; 2009). DLR; 2009.

[13] A. Stohl; C. Forster; S. Eckhardt; N. Spichtinger; H. Huntrieser; J. Heland; H. Schlager; S. Wilhelm; F. Arnold; and O. Cooper. A backward modeling study of intercontinental pollution transport using aircraft measurements. Journal of Geophysical Research; 108(D12):Ach 8 1–18; 2003.

[14] M. Thümmel; G. Looye; M. Kurze; M. Otter; and J. Bals. Nonlinear inverse models for control. In Gerhard Schmitz; editor; Proceedings of the 4th International Modelica Conference; Hamburg; March 7-8; 2005; pages 267–279; 2005.

[15] Christopher D. Twigg and Doug L. James. Backward steps in rigid body simulation. ACM Transactions on Graphics; 27:25:1–10; 2008.

[16] Eric A. Wan; Er A. Bogdanov; Richard Kieburtz; Antonio Baptista; Magnus Carlsson; Yinglong Zhang; and Mike Zulauf. Model predictive neural control for aggressive helicopter maneuvers. In Software Enabled Control: Information Technologies for Dynamical Systems; chapter 10; pages 175–200. IEEE Press; John Wiley & Sons; 2003.

[17] K.B. Wipke; M.R. Cuddy; and S.D. Burch. Advisor 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach. Vehicular Technology; IEEE Transactions on; 48(6):1751 –1761; November 1999.

Citeringar i Crossref