Konferensartikel

50-nm gate-length InP-based HEMTs for millimeterwave applications

Anders Mellberg
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Per-åke Nilsson
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Niklas Rorsman
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Jan Grahn
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Herbert Zirath
Microwave Electronics Laboratory, Chalmers University of Technology, Sweden

Ladda ner artikel

Ingår i: GigaHertz 2003. Proceedings from the Seventh Symposium

Linköping Electronic Conference Proceedings 8:17, s.

Visa mer +

Publicerad: 2003-11-06

ISBN:

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

InP-based HEMT technology presents substantial performance advantages for millimeter wave applications such as high-speed wireless communications; radio astronomy; and radar. We report on the development of a 50-nm gate-length process for millimeter wave InP HEMTs. The gate patterns were defined using a single electron beam exposure and a bi-layer resist system. The process was evaluated on pseudomorphic InAlAs/InGaAs/InP HEMT material. A two-finger; 100 µm gate-width device showed an extrinsic DC peak transconductance of 650 mS/mm at Vds = 1.0 V. At the same drain bias; the transit frequency and the maximum frequency of oscillation were 180 and 230 GHz respectively. The developed 50-nm process constitutes the new baseline for the InP MMIC process at the Microwave Electronics Laboratory at Chalmers.

Nyckelord

Inga nyckelord är tillgängliga

Referenser

[1] M. Matloubian; C. Pobanz; D. Docter; M. Case; M. Micovic; C. Nguyen; M. Yu; and M. Lui; "Submillimeter wave InP-based HEMTs with fmax over 600 GHz;From the topical meeting " Ultrafast Electronics and Optoelectronics. From the Topical Meeting; pp. 2-4; 1999.

[2] P. M. Smith; S.-M. J. Liu; M.-Y. Kao; P. Ho; S. C. Wang; K. H. G. Duh; S. T. Fu; and P. C. Chao; "W-band high efficiency InP-based power HEMT with 600 GHz fmax;" IEEE Microwave and Guided Wave Letters; vol. 5; pp. 230-232; 1995.

[3] Y. Yamashita; A. Endoh; K. Shinohara; K. Hikosaka; T. Matsui; S. Hiyamizu; and T. Mimura; "Pseudomorphic In0.52Al0.48AsIn0.7Ga0.3As HEMTs with an ultrahigh fT of 562 GHz;" Electron Device Letters; vol. 23; pp. 573-575; 2002.

[4] J. W. Archer; R. Lai; R. Grundbacher; M. Barsky; R. Tsai; and P. Reid; "An indium phosphide MMIC amplifier for 180-205 GHz;" IEEE Microwave and Wireless Components Letters; vol. 11; pp. 4-6; 2001.

[5] R. Lai; M. Barsky; R. Grundbacher; P. H. Liu; T. P. Chin; M. Nishimoto; R. Elmajarian; R. Rodriguez; L. Tran; A. Gutierrez; A. Oki; and D. Streit; "InP HEMT amplifier development for G-band (140-220 GHz) applications;" International Electron Devices Meeting. Technical Digest. IEDM; pp. 175-177; 2000.

[6] S. Weinreb; T. Gaier; M. Barsky; Y. C. Leong; and L. Samoska; "High-gain 150-215-GHz MMIC amplifier with integral waveguide transitions;" IEEE Microwave and Guided Wave Letters; vol. 9; pp. 282-284; 1999.

[7] T. Parenty; S. Bollaert; J. Mateos; X. Wallart; and A. Cappy; "Design and realization of sub 100 nm gate length HEMTs;" International Conference on Indium Phosphide and Related Materials; pp. 626-629; 2001.

Citeringar i Crossref